Ad Hoc CubeSat Constellations: Secondary Launch Coverage and Distribution

Anne Marinan
Austin Nicholas, Kerri Cahoy
Massachusetts Institute of Technology

2012 CubeSat Summer Workshop
August 11, 2012
Outline

• Motivation
• Approach
 – Launch opportunities
 – Case Studies
• Coverage analysis and observations
 – On-board propulsion
• Conclusions
Motivation

• CubeSat Constellations
 – Higher spatial and temporal resolution
 – Smaller, cheaper satellites

• Launch challenges
 – Secondary payload – cheaper, but variable
 – Primary payload – more expensive, but guaranteed orbits of choice
Questions

- Would an ad hoc constellation give comparable science to a planned configuration?
- What would be required to make it a reality?
 - Propulsion: distribution, overcoming drag
 - Launch opportunities
CubeSat Launches

http://space.skyrocket.de/doc_sat/cubesat.htm
Broad Agency Announcement: Edison Small Satellite Flight Demonstration Missions
Case Studies

- **Case 1**
 - 2010-2011 CubeSat launch opportunities

- **Case 2**
 - 2012-2013 CubeSat launch opportunities
 - A: No on-board propulsion
 - B: On-board propulsion to distribute satellites and negate drag

- **Case 3 (Reference)**
 - 6 evenly distributed orbital planes,
 - 781 km, 86° (based on Iridium)
Case Studies

<table>
<thead>
<tr>
<th>Case</th>
<th>Date</th>
<th>Altitude (km)</th>
<th>Inclination (°)</th>
<th>Launch Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5/20/2010</td>
<td>300</td>
<td>51</td>
<td>Tanegashima</td>
</tr>
<tr>
<td></td>
<td>7/12/2010</td>
<td>630</td>
<td>98</td>
<td>Sriharikota</td>
</tr>
<tr>
<td></td>
<td>11/19/2010</td>
<td>650</td>
<td>72</td>
<td>Kodiak</td>
</tr>
<tr>
<td></td>
<td>12/8/2010</td>
<td>300</td>
<td>34.5</td>
<td>Canaveral</td>
</tr>
<tr>
<td></td>
<td>3/4/2011</td>
<td>690</td>
<td>98</td>
<td>Vandenberg</td>
</tr>
<tr>
<td>2</td>
<td>7/12/2012</td>
<td>300</td>
<td>51</td>
<td>Tanegashima</td>
</tr>
<tr>
<td></td>
<td>8/14/2012</td>
<td>770 x 480</td>
<td>64</td>
<td>Vandenberg</td>
</tr>
<tr>
<td></td>
<td>10/2012</td>
<td>600</td>
<td>98</td>
<td>Dombarovsky/Yasniy</td>
</tr>
<tr>
<td></td>
<td>10/2012</td>
<td>750</td>
<td>98</td>
<td>Sriharikota</td>
</tr>
<tr>
<td></td>
<td>10/2012</td>
<td>275</td>
<td>51</td>
<td>Wallops</td>
</tr>
<tr>
<td></td>
<td>12/21/2012</td>
<td>300</td>
<td>51</td>
<td>Canaveral</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>300</td>
<td>51</td>
<td>Tyuram/Baikonur</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>400</td>
<td>98</td>
<td>Kauai</td>
</tr>
<tr>
<td></td>
<td>Summer 2013</td>
<td>400</td>
<td>40</td>
<td>Wallops</td>
</tr>
</tbody>
</table>
Case 1 Launch Profile

- **July 2010**: 300 km, 51 degrees
- **August 2010**: 630 km, 98 degrees
- **September 2010**: 650 km, 72 degrees
- **October 2010**: 300 km, 35 degrees
- **November 2010**: 690 km, 98 degrees
Case 2A Launch Profile

Analysis
Coverage Analysis Assumptions

- **Focus: revisit time**
 - Average time between satellite coverage for each spot on the Earth
 - Analysis performed over 24-hour period
- **Identical 3U, 4 kg CubeSats**
 - 0.01 m² drag profile
- **Sensor footprint** – 45° cone
- **One year (or time to deorbit) satellite lifetime**
Coverage: 1 Satellite per Plane

Case 2 (Ad Hoc) vs Reference Case

- Reference case shows more frequent coverage
- 3-5 hours max revisit time for either
Creating a Constellation

• Use on-board propulsion to distribute multiple satellites across orbital planes
 – Could also use to counter orbital decay due to atmospheric drag (extend mission lifetime)

• Disadvantages:
 – Adds mass and complexity to system

• Constellation size limited by:
 – Number of satellites on each launch vehicle
 – Initial orbital altitude (duration)
On-Board Propulsion

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>Inclination (°)</th>
<th>Maneuver Time [days]</th>
<th>Maneuver ΔV* [m/s]</th>
<th>Mission Life with no Drag Compensation** [days]</th>
<th>Extra ΔV for 1 Year Mission Life** [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>51.0</td>
<td>31.4</td>
<td>22.5</td>
<td>49.5</td>
<td>145.3</td>
</tr>
<tr>
<td>400</td>
<td>40.0</td>
<td>32.1</td>
<td>12.6</td>
<td>402.0</td>
<td>N/A</td>
</tr>
<tr>
<td>705</td>
<td>98.2</td>
<td>34.3</td>
<td>10.6</td>
<td>> 405</td>
<td>N/A</td>
</tr>
<tr>
<td>650</td>
<td>72.0</td>
<td>33.9</td>
<td>10.7</td>
<td>> 405</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* Assumes Isp of 1000 s

** After proper distribution has been achieved

- About a month required to distribute 6 satellites over one orbital plane
- Baseline electrospray thrusters (Isp 1000 s)
Amount of Propellant Needed

Fuel Cost of Maneuvering

- \(I_{sp} = 450s \)
- \(I_{sp} = 1000s \)
- \(I_{sp} = 2000s \)
- \(I_{sp} = 3000s \)
Orbital Positioning – 400 km

State History - 3 Satellites, 400 km Circular Orbit

Control History - 3 Satellites, 400 km Circular Orbit
Orbital Positioning – 300 km

Control History - 6 Satellites, 280 km Circular Orbit

Tangential Thrust [µN]

Time [days]
Average Revisit Time: 3 Satellites per Plane

Case 2B

Reference Case

- Case 2 maximum around 1.4 hours
- Reference case maximum around 1 hour
Average Revisit Time:
6 Satellites per Plane

- Case 2 maximum around 1 hour
- Reference case maximum around 30 minutes
Future Considerations

• Goal – achieve revisit time comparable to reference constellation
• Higher altitudes generally better
 – Less deltaV to maneuver and distribute
 – Less fuel required to counter drag
 – Larger swath for given sensor FOV
 – But, fewer launch opportunities
• Sensitivity analysis:
 – Launch schedule
 – Available orbits
 – Sensor FOV
• Extend analysis to include all possible LEO launch options
Secondary launch opportunities are a cost-effective option for CubeSat constellations.

Without propulsion, worst-case revisit time is 5 hours.

With propulsion, worst-case revisit time is 1 hour.

On-board propulsion enables more satellites per plane (better science coverage):
- One month to distribute properly
- Combat atmospheric drag to extend mission life