Wallops CubeSat-SmallSat Ground Stations and Frequency Standardization

Scott Schaire with contributions from Serhat Altunc and Wayne Powell

April 2013

NASA/GSFC/Wallops Flight Facility
Scott.h.schaire@Nasa.gov
Wallops/Morehead CubeSat Groundstation Network

- Wallops UHF Groundstation Specifications
 - Built 1959 by MIT Lincoln Labs
 - Valued at $20M
 - Beamwidth: 2.9 degrees
 - Frequency Range: 380 to 480 MHz
 - Frequency Band: UHF-Band
 - Secondary Frequency Band: X-Band available for future high data rate CubeSat communication
 - Antenna Main Beam Gain: 35 dBi
 - Diameter: 18.3 meters (60’)
- Wallops UHF CubeSat Groundstation Use
 - Cutting-Edge CubeSat communication over a government-licensed UHF frequency allocation that enables high data rates (2.63 Mbit/Sec)
 - Currently communicating with DICE spacecraft
 - Slated for use for Firefly, MicroMAS, CeREs and many proposed CubeSats
- Future Capability at Morehead State (Sept. 2013)
 - NSF funding a backup UHF capability with around 37 dBi gain at UHF-band at Morehead State University using their 21 meter X, S-band dish.
UHF for LunarCube Communication

- Uplink Data Rate is a function of the ground amplifier
 - 19.2 Kbits/sec Uplink with a 100W amplifier
- Downlink with a 2W satellite transmitter ranges from 1.5 to 50 Kbits/sec depending on the satellite antenna
- Calculation assumptions
 - Lunar Reconnaissance Orbiter (LRO) maximum slant range of 406,094 km
 - Wallops UHF CubeSat Groundstation G/T of 10.6 dB/K
 - L-3 Cadet UHF CubeSat Radio

<table>
<thead>
<tr>
<th>S/C Antenna</th>
<th>Data Rate Downlink-kbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Gain Dipole (dBi)-Linear Polarization</td>
<td>1.5</td>
</tr>
<tr>
<td>Medium Gain (dBi)-Linear Polarization</td>
<td>6</td>
</tr>
<tr>
<td>High Gain Deployable (dBi)-Circular Polarization</td>
<td>50</td>
</tr>
</tbody>
</table>
Preparing a White Paper focused on establishment of a blanket authorization policy for allocating a band segment for Government CubeSats similar to that allocated to amateurs

Precursor to advancing radios and antennas for CubeSats and small satellites

Minimize the time required to obtain an authorization and to establish the availability of existing NASA ground resources for support of Government CubeSats

Coordinating with NASA HQ SCaN Space Communications and Navigation (SCaN)

X-band communication system is being considered to increase the data rate for CubeSats/small satellites

In discussions with University of Colorado Laboratory for Atmospheric and Space Physics (LASP) regarding development of a X-band radio for CubeSats, small satellites, and sounding rockets

Also in discussion with MSFC on a X-band radio can support up to 150 Mbps

Working with University of Michigan and JEM engineering on CubeSat antennas
Transceiver Candidates

<table>
<thead>
<tr>
<th>Transceiver</th>
<th>Flight Heritage</th>
<th>Frequency Bands</th>
<th>Data Rate</th>
<th>Mass (g)</th>
<th>Output Power (watt)</th>
<th>Volume (cm^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tethers Unlimited</td>
<td>No</td>
<td>S-band</td>
<td>400 kbps</td>
<td>380</td>
<td>1</td>
<td>10X10X3.5</td>
</tr>
<tr>
<td>MHX-2420</td>
<td>RAX</td>
<td>S-band</td>
<td>230 kbps Downlink/115 kbps Uplink</td>
<td>75</td>
<td>1</td>
<td>8.9X5.3X1.8</td>
</tr>
<tr>
<td>AstroDev Lithium Radio</td>
<td>RAX, Firefly, CSSWE, CXBN, CINEMA</td>
<td>UHF, S-Band</td>
<td>9.6 kbps, 38.4 kbps, 76.8 kbps</td>
<td>52</td>
<td>250 mW – 4 W</td>
<td>10X6.5X3.3</td>
</tr>
<tr>
<td>L3 Cadet</td>
<td>DICE, MicroMAS, CeREs</td>
<td>UHF</td>
<td>24Mbps downlink/250 kbps uplink</td>
<td>215</td>
<td>2</td>
<td>6.9X6.9X1.3</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>S-band downlink/UHF uplink</td>
<td>24Mbps downlink/250 kbps uplink</td>
<td>215</td>
<td>2</td>
<td>6.9X6.9X1.3</td>
</tr>
<tr>
<td>Nimitz Radio</td>
<td>No</td>
<td>S-band Downlink/UHF uplink</td>
<td>50 kbps/1Mbps</td>
<td>500</td>
<td>1</td>
<td>9X9.6X1.4</td>
</tr>
<tr>
<td>MSFC</td>
<td>FASTSat2</td>
<td>S and X-band downlink/S-band Uplink</td>
<td>150 mbps/50kbps uplink</td>
<td><1kg</td>
<td>2</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Note: Data rates and bandwidths vary according to specific transceiver configurations.
NASA Ground Stations Options Exist in the Following Frequency Ranges and G/T performances

- **X Band** downlink via Ground Network and Poker Flat 8200-8500 MHz
 - G/T= 34.5 dB/K (11 meter)
- **S Band** via the ground network 2200-2400 MHz
 - Cost of using NASA’s GN and “S” band may be prohibitive for low budget satellites
 - Wallops Range 2200-2400 MHz Downlink and 2025-2120 MHz uplink Range resources
 - G/T= 23 dB/K (11 meter)
- **Upper S band** 2700-2900MHz
 - Wallops SPANDAR S-band Radar dish
 - G/T= 29 dB/K (18 meter)
- **UHF** 380 to 480 MHz
 - Wallops UHF CubeSat groundstation
 - Morehead UHF, X, S – band CubeSat groundstation
 - Government Frequency licenses are secondary
 - G/T=10.6 dB/K (18 meter)
UHF-, S- and X-band Performance Comparison

- UHF – band: 10.6 dB/K
- S-Band: 23 dB/K
 – Delta: 12.4 dB/K versus UHF-band
- X-band: 34.5 dB/K
 – Delta: 23.9 dB/K versus UHF, 11.5 dB/K versus S-band
- X-band antennas/communication systems are compact
- UHF-band has significant Interference
- Performance enhancement by utilizing higher gain compact X-band communication systems instead of UHF or S-band communication systems.
 – Using antennas gain delta 5-10 dB comparing UHF with X-band
- X-band systems can support 150 Mbps: FastSat2 and LCT2
- X-band communication system offers real science missions with Cube/Small Satellites

<table>
<thead>
<tr>
<th>Band</th>
<th>G/T [dB/K]</th>
<th>c/f [dB m]</th>
<th>Total [dB m/K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF (465 MHz)</td>
<td>10.6</td>
<td>-3.8</td>
<td>6.8</td>
</tr>
<tr>
<td>S-Band (2300 MHz)</td>
<td>23.0</td>
<td>-17.7</td>
<td>5.3</td>
</tr>
<tr>
<td>X-Band (8350 MHz)</td>
<td>34.5</td>
<td>-28.9</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Interference Concern

• Prior to requesting a specific downlink frequency the spectrum must be monitored at that frequency at all the sites where that frequency is to be received to assure that no RF interference will exist within that bandwidth to be received and sufficient guard band exists from adjacent emissions.
Additional Considerations and Recommendations

- Recommend avoiding the use of S band for SmallSat and CubeSat downlinks and instead designing to use the NASA Ground Network (GN) (X-band down, S-band up).
- NASA GN antennas provide S-band command uplink and X-band telemetry downlink support from the same antenna and provide existing world wide connectivity generally required for NASA missions.
- NASA GN supports equatorial thru polar orbital inclinations.
- Consideration should be given to development of a transponder for CubeSats capable of S-band command reception and X-band downlink telemetry at power levels needed to support anticipated link margins.
- Recommended X-band downlink modulation is OQPSK and uplink should be compatible with the NASA GN.
- X-band downlink use Low Density Parity Check (LDPC) Codes 7/8 and uplink should adapt standards compatible with NASA GN command modulation formats.
- Standardized flight communications hardware should be developed and adapted to enable a one time NTIA Spectrum Certification for all Government funded CubeSat missions thereby eliminating the time required for the first step of the two-step process.
- The GN ground systems already have NTIA Spectrum Certification for the first step of the process.
Backup
Collaborated with Univ. Of Mich. on Electrically Small Printed Helical Antennas to compensate slant range differences