Bistatic Radar Receiver for CubeSats: The RAX Payload

John Buonocore
Hasan Bahcivan
SRI International

7th Annual CubeSat Developer’s Workshop
22 April 2010
Cal Poly San Luis Obispo
Mission: High-resolution Mapping of Auroral Ionospheric Irregularities

Payload: UHF Radar Receiver

Transmitter: Ground-based MW-Class IS Radar

Support: NSF CubeSat Program (NSF08-549)

Selected: September 2008

Delivered: February 2010

Launch: TBD 2010, DoD Minotaur-4 from KLC

Orbit: 650 km circular, 72 deg. inclination

Lifetime: 1 year primary + 5 year secondary
RAX Experiment Description

- RAX is bistatic - Receiver located far from Transmitter
- Maps irregularities with high spatial & angular resolution
- Ground-based ISR also measures background plasma state & E-Field

Poker Flat Advanced Modular Incoherent Scatter Radar (Alaska)
RAX Compatibility with Global ISRs

<table>
<thead>
<tr>
<th>Name</th>
<th>Loc</th>
<th>Lat</th>
<th>Freq. MHz</th>
<th>MW</th>
<th>Beam width</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFISR</td>
<td>Alaska</td>
<td>78</td>
<td>449</td>
<td>2.0</td>
<td>1º</td>
</tr>
<tr>
<td>RISR*</td>
<td>Canada</td>
<td>81</td>
<td>442</td>
<td>2.0</td>
<td>1º</td>
</tr>
<tr>
<td>MUIR</td>
<td>Alaska</td>
<td>62</td>
<td>446</td>
<td>0.25</td>
<td>10º</td>
</tr>
<tr>
<td>MHO</td>
<td>Massachusetts</td>
<td>53</td>
<td>440</td>
<td>2.5</td>
<td>0.6º</td>
</tr>
<tr>
<td>Arecibo</td>
<td>Puerto Rico</td>
<td>34</td>
<td>430</td>
<td>2.5</td>
<td>0.2º</td>
</tr>
<tr>
<td>ESR</td>
<td>Norway</td>
<td>75</td>
<td>500</td>
<td>1.0</td>
<td>0.6º</td>
</tr>
</tbody>
</table>
Challenges for RAX Radar Receiver Design

Traditional (monostatic) Radar

- Synchronizes TX pulses with RX range gate timing
- Shares local oscillator (LO) with TX and RX subsystems

Bistatic Radar

- Requires accurate independent synchronization scheme
- Requires LO stability - especially during ISR flyover

Additional Requirements (in addition to CubeSat SWAP)

- Quick recovery from direct-path ISR illumination
- Extremely large dynamic range
- Immunity from bus-generated EMI (shared COMMS antenna)
- Efficient dissipation of thermal loads
- Avoidance of radiation sensitive components
- Tunability, gain control, housekeeping status
Synchronization Scheme

GPS Based

• Receiver
 Sample clock is allowed to free-run
 Receiver samples I & Q data at 1 MHz
 Samples time-stamped via onboard GPS PPS

• Transmitter
 Timing standard is free-running
 Time-stamp first TX pulse to GPS time
 Time and drift values sent to spacecraft

Overflow Based

Direct-path TX signal saturates receiver every second
Record ADC overflow bit on satellite
TX signal time-stamp and drift values sent to spacecraft
Frequency Stability Considerations

- Transmitter and Receiver oscillators are free-running
- Short-term stability is very good
- A small frequency offset between TX and RX is okay
- Measure TX signal offset using Receiver
RAX Payload Receiver

- Primarily Analog Industrial Components
- Pulse (>2μS) or CW operation
- 426 – 510 MHz (1 MHz steps)
- 4-bands
- Adjustable Gain
- Internal Voltage Regulation
- Continuous Sampling at 14-bit Resolution
- In-phase and Quadrature (I/Q) Signals
- Internal 500 MHz Calibration Source

Enclosure

- Provides EMI Shield
- Thermally Dissipative
- 9.7cm x 9.7cm x 3.6cm
- Weight 320 g
- Power 2.6 W
I/Q Receiver Board

Calibration
Internal 500 MHz source

Preselector
SAW Bandpass Filters
4 Bands:
- 426 – 434 MHz
- 437 – 445 MHz
- 443 – 452 MHz
- 483 – 510 MHz

Gain
-4 to +58 dB (2 dB steps)

Mixer
Active – I & Q outputs
High Dynamic Range
2X LO input

I/Q Filter
Passive LC, 250 kHz BW
10-pole Bessel function

ADC
Dual Interleaved I/Q
14-Bit, 1 MHz Sampling

Homodyne Design - Direct Conversion (No IF)

PCB
4-layer
FR-4 construction
Thermal Transfer Perimeter
8.6cm x 8.6cm
I/Q Receiver Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise figure</td>
<td>3.8 dB (400° K)</td>
</tr>
<tr>
<td>Noise Floor</td>
<td>-114 dBm</td>
</tr>
<tr>
<td>Gain Range</td>
<td>-4 dB to +58 dB</td>
</tr>
<tr>
<td>Single Frequency Dynamic Range (DR)</td>
<td>60 dB</td>
</tr>
<tr>
<td>Dual Frequency Spurious Free DR</td>
<td>54 dB</td>
</tr>
<tr>
<td>LO Radiation</td>
<td>< -80 dBm</td>
</tr>
<tr>
<td>Max RF Input (no damage)</td>
<td>+20 dBm</td>
</tr>
<tr>
<td>Max Recovery Time</td>
<td>30 μS</td>
</tr>
<tr>
<td>Recovery to 1 dB</td>
<td>10 μS</td>
</tr>
</tbody>
</table>

![100-microsecond Pulse Saturation Response](image)

\[
\text{SQRT}[I^2 + Q^2]
\]
I/Q Receiver Selectivity
Local Oscillator Board

10 MHz Reference Oscillator
TCXO
Digital compensation ±0.28 ppm, -40C to +85C
Stabilization time ~200 sec. (cold start)
I2C monitor for crystal temp
I2C control for freq push/pull (1ppb or 0.01Hz)

ADC Clock
Buffered 10 MHz from TCXO
Conversion to sinewave to reduce EMI

Mixer Local Oscillator
Phase-locked system
852 - 1020 MHz
2 MHz control resolution

Cal Oscillator
500 MHz – free running
I2C on/off control

PCB
4-layer
FR-4 construction
Thermal Transfer Perimeter
7.6cm x 7.6cm
PWM DC/DC Buck Regulators
High efficiency (>90%)
Wide input range (3 - 17V)
Regulated outputs: +5V, +3V
Integrated design – low radiated EMI

LC Filtering on Input and Outputs

Voltage and Temperature Monitoring

Shielding
Continuous external ground plane
Compartment in housing

PCB
2-layer
FR-4 construction
Thermal Transfer Perimeter
8.6cm x 8.6cm
Temperature Cycling in (Moderate) Vacuum

Equipment
14L Enclosure with 0.6 T Pump
10cm X 10cm liquid coolant thermal Plate
Temperature range (-60°C to +60°C)

Setup
RAX Receiver in 1U Pumpkin frame
Multiple thermal sensors

Procedure
Baseline receiver operation
RX OFF: Cold-soak @ -40°C for 30 min
RX ON: Start logging data
Temperature ramp-up (240 min. to +55°C)
Post-test operational check

Results
TCXO drift <0.24 ppm (spec: +/-0.28ppm)
PLL maintained lock
RF gain variation ± 1.5 dB
Internal DC voltages stable
Crystal Oscillator Thermal Response
Board-Level Thermal Response
Vibration Testing

Pre-Test Sine-Sweep
Baseline all resonances
Range: 20-2000 Hz @ 0.5G
Rate: 3 Oct/Min
One sweep per axis

Random Vibration Test
20-2000 Hz
10.4 G rms
1 minute/axis

Post-Test Sine-Sweep
Same as pre-test
Compare pre/post resonances

Results
No change in resonances
Pass - Visual inspection
Pass - Post electrical tests
Functional Testing

Radar Simulator
Generates radar direct and scattered signals
Variable timing (Pulse Width, IPP)
Adjustable transmit frequency

Payload Interface Module (PIM) Simulator
Direct interface to payload receiver
Supplies power and control to payload
Collects and stores I & Q samples

Integrated Testing with Cubesat BUS
PIM interface
Antenna Interface
I2C checkout
Full-up EMI validation

![Diagram of Radar Simulator and Payload Interface Module (PIM) Simulator](image)
The Path Ahead

RAX Science Planning at 2010 NSF CEDAR Workshop

Future Applications
- Antenna pattern measurements for large GB Radars
- Other bistatic radar experiments in the UHF band
- Global UHF LEO Noise Survey

Ongoing life tests
- 11-week (24/7) operational burn-in
- No failures

Future design modifications
- Investigate Digital down-converters
- Lower-power techniques
- Lighter materials
- Integrate PIM Functions within Structure
- Explore PnP Capabilities