Ka-Band Transmitter for Small Spacecraft

Smallsat Conference 2013
• Phase I Transmitter:
 – Ka-Band EESS Primary Band: 25.5 – 27.0 GHz
 – ½ watt RF Power Output (+27 dBm)
 – 23.0 dBiC Antenna
 – 50.0 dBm (20.0 dBW) EIRP
 – QPSK Modulator
 – Two CODING STEPS Taken from DVB-S2:
 • QPSK; R=1/4; LDPC Concatenated with BCH; Spectral Efficiency = 0.4902 bits/Hz
 • QPSK; R=9/10; LDPC Concatenated with BCH; Spectral Efficiency = 1.7886 bits/Hz
 – Supports 10 Mbps; 2.4 m GS Antenna with 99.5% Avail @ Svalbard; 600 km Orbit; 25 MHz Bandwidth
 – Supports 40 Mbps; 2.4 m GS Antenna under No-Rain Conditions @ Svalbard; 25 Mbps
 – 1.0 to 1.1 U Volume, including antenna
 – 10 watts DC Input Power
 – CCM Mode Only
• **Phase II Transmitter:**
 - Ka-Band EESS Primary Band: 25.5 – 27.0 GHz
 - ½ watt RF Power Output (+27 dBm)
 - 23.0 dBiC Antenna
 - 50.0 dBm (20.0 dBW) EIRP
 - Full DBV-S2 Modulator
 - Supports ALL Constant Envelope MODCODs from DVB-S2:
 - Supports 10 Mbps; 2.4 m GS Antenna with 99.5% Avail @ Svalbard
 - Supports 40 Mbps; 2.4 m GS Antenna under No-Rain Conditions @ Svalbard
 - 1.0 to 1.1 U Volume, including antenna
 - 15 watts DC Input Power
 - CCM, VCM and ACM are Possible
This is only to be used to show the DVB-S2 MODCOD table steps (in order of spectral efficiency). It is not to be taken as an optimized system approach. The grey highlighted rows are MODCOD steps that have a MINIMUM amplitude crest factor.

<table>
<thead>
<tr>
<th>Step Available</th>
<th>MODulation</th>
<th>CODing Rate</th>
<th>Es/No</th>
<th>Sym rate</th>
<th>BW (nyq)</th>
<th>C/No</th>
<th>C/N</th>
<th>Spectral Efficiency</th>
<th>Bits/ symbol</th>
<th>Data Rate</th>
<th>Eb/No</th>
<th>Eb/No</th>
<th>Gross Bit Rate</th>
<th>Info bits</th>
<th>code bits</th>
<th>"overhead"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>QPSK</td>
<td>2.35</td>
<td>20.83</td>
<td>25.00</td>
<td>70.84</td>
<td>-3.14</td>
<td>0.490243</td>
<td>2</td>
<td>10.2134</td>
<td>0.746</td>
<td>-5.360</td>
<td>41.67</td>
<td>10.42</td>
<td>31.25</td>
<td>1.951%</td>
<td></td>
</tr>
<tr>
<td>1/3</td>
<td>QPSK</td>
<td>1.24</td>
<td>20.83</td>
<td>25.00</td>
<td>71.95</td>
<td>-2.03</td>
<td>0.656448</td>
<td>2</td>
<td>13.6760</td>
<td>0.588</td>
<td>-4.250</td>
<td>41.67</td>
<td>13.89</td>
<td>27.78</td>
<td>1.533%</td>
<td></td>
</tr>
<tr>
<td>2/5</td>
<td>QPSK</td>
<td>0.3</td>
<td>20.83</td>
<td>25.00</td>
<td>72.89</td>
<td>-1.09</td>
<td>0.789412</td>
<td>2</td>
<td>16.4461</td>
<td>0.727</td>
<td>-3.310</td>
<td>41.67</td>
<td>16.67</td>
<td>25.00</td>
<td>1.324%</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>QPSK</td>
<td>1.00</td>
<td>20.83</td>
<td>25.00</td>
<td>74.19</td>
<td>0.21</td>
<td>0.988858</td>
<td>2</td>
<td>20.6012</td>
<td>1.049</td>
<td>-2.010</td>
<td>41.67</td>
<td>20.83</td>
<td>20.83</td>
<td>1.114%</td>
<td></td>
</tr>
<tr>
<td>3/5</td>
<td>QPSK</td>
<td>2.23</td>
<td>20.83</td>
<td>25.00</td>
<td>75.42</td>
<td>1.44</td>
<td>1.183034</td>
<td>2</td>
<td>24.7563</td>
<td>1.481</td>
<td>-0.790</td>
<td>41.67</td>
<td>25.00</td>
<td>16.67</td>
<td>0.975%</td>
<td></td>
</tr>
<tr>
<td>2/3</td>
<td>QPSK</td>
<td>3.10</td>
<td>20.83</td>
<td>25.00</td>
<td>76.29</td>
<td>2.31</td>
<td>1.322253</td>
<td>2</td>
<td>27.5469</td>
<td>1.887</td>
<td>0.000</td>
<td>41.67</td>
<td>27.78</td>
<td>13.89</td>
<td>0.851%</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>QPSK</td>
<td>4.03</td>
<td>20.83</td>
<td>25.00</td>
<td>77.22</td>
<td>3.24</td>
<td>1.487473</td>
<td>2</td>
<td>30.9890</td>
<td>2.306</td>
<td>1.020</td>
<td>41.67</td>
<td>31.25</td>
<td>10.42</td>
<td>0.635%</td>
<td></td>
</tr>
<tr>
<td>4/5</td>
<td>QPSK</td>
<td>4.68</td>
<td>20.83</td>
<td>25.00</td>
<td>77.87</td>
<td>3.89</td>
<td>1.587196</td>
<td>2</td>
<td>33.0866</td>
<td>2.674</td>
<td>1.670</td>
<td>41.67</td>
<td>33.33</td>
<td>8.33</td>
<td>0.600%</td>
<td></td>
</tr>
<tr>
<td>5/6</td>
<td>QPSK</td>
<td>5.18</td>
<td>20.83</td>
<td>25.00</td>
<td>78.37</td>
<td>4.39</td>
<td>1.654683</td>
<td>2</td>
<td>34.4721</td>
<td>2.993</td>
<td>2.170</td>
<td>41.67</td>
<td>37.42</td>
<td>6.92</td>
<td>0.720%</td>
<td></td>
</tr>
<tr>
<td>6/7</td>
<td>QPSK</td>
<td>5.50</td>
<td>20.83</td>
<td>25.00</td>
<td>78.69</td>
<td>4.71</td>
<td>1.779910</td>
<td>3</td>
<td>37.0815</td>
<td>2.996</td>
<td>0.729</td>
<td>62.50</td>
<td>37.50</td>
<td>25.00</td>
<td>1.116%</td>
<td></td>
</tr>
<tr>
<td>7/8</td>
<td>QPSK</td>
<td>6.20</td>
<td>20.83</td>
<td>25.00</td>
<td>79.39</td>
<td>5.41</td>
<td>1.760451</td>
<td>3</td>
<td>38.6011</td>
<td>3.729</td>
<td>3.190</td>
<td>41.67</td>
<td>37.04</td>
<td>4.63</td>
<td>0.637%</td>
<td></td>
</tr>
<tr>
<td>8/9</td>
<td>QPSK</td>
<td>6.62</td>
<td>20.83</td>
<td>25.00</td>
<td>79.61</td>
<td>5.63</td>
<td>1.788012</td>
<td>3</td>
<td>37.6263</td>
<td>3.895</td>
<td>3.410</td>
<td>41.67</td>
<td>37.50</td>
<td>4.17</td>
<td>0.633%</td>
<td></td>
</tr>
<tr>
<td>9/10</td>
<td>QPSK</td>
<td>7.81</td>
<td>20.83</td>
<td>25.00</td>
<td>81.10</td>
<td>7.12</td>
<td>2.228124</td>
<td>3</td>
<td>46.4193</td>
<td>4.431</td>
<td>3.139</td>
<td>62.50</td>
<td>40.88</td>
<td>15.93</td>
<td>0.972%</td>
<td></td>
</tr>
</tbody>
</table>

Canopus Systems US Proprietary Information
• Phase III Transmitter:
 – Ka-Band EESS Primary Band: 25.5 – 27.0 GHz
 – ½ to 1 watt RF Power Output (+27 to +30 dBm)
 – 23.0 dBiC Antenna
 – 50.0 dBm (20.0 dBW) EIRP to +53.0 dBm (23.0 dBW)
 – Full DBV-S2 Modulator
 – Supports ALL Constant Envelope MODCODs from DVB-S2:
 – Supports 125 Mbps Data Rate
 – 1.0 to 1.1 U Volume, including antenna
 – 14 watts DC Input Power
 – CCM, VCM and ACM; ACM Fully Supported
Progression of Ka-Tx Design

Phase I Transmitter
Company Contact Info:

Canopus Systems US
NASA Ames Research Park, Bldg. 503
P.O. Box 1
Moffett Field, CA 94035-0001

w. www.canopus-us.com
e. info@canopus-us.com

Jan A. King
jan@canopus-us.com
1-650-946-7007