Preliminary Software Architecture for an ADCS Module in Space ROS-Enabled Nanosatellites

Pablo R. Yanyachi, Alfredo Mamani and Brayan A. Espinoza

CubeSat Developers Workshop 2025

Cal Poly San Luis Obispo

UNIVERSIDAD NACIONAL DE SAN AGUSTIN DE AREQUIPA - AREQUIPA - PERU

About Us

Observatorio de Characato / Instituto Astronómico y Aeroespacial Pedro Paulet (IAAPP).

Instituto de Investigación Astronómico y Aeroespacial Pedro Paulet (IAAPP)

- The IAAPP UNSA is dedicated to scientific and technological research and to the training of researchers.
- It manages the Characato Observatory and develops research projects.
- It carries out satellite tracking, GPS-GNSS observation, DORIS and scientific dissemination.

Introduction

ADCS MODULE

Responsible for determining and controlling its orientation in space. It uses sensors (such as gyroscopes and magnetometers) to measure attitude and actuators (such as reaction wheels and magnetotorquers) to adjust it according to mission requirements.

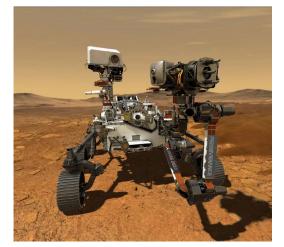
ROBOT OPERATING SYSTEM

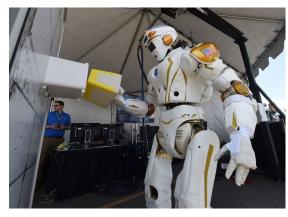
An open-source software framework designed for developing robotic applications. It provides tools, libraries, and a modular architecture for communication between nodes

SPACE ROS

An extension of ROS adapted for space applications. It incorporates improvements in safety, reliability, and real-time determinism, making it suitable for controlling satellites and robots in space environments while aligning with aerospace standards.

EROS




Robot Operating System in Space

Robonaut 2, 2011

Perseverance, 2021

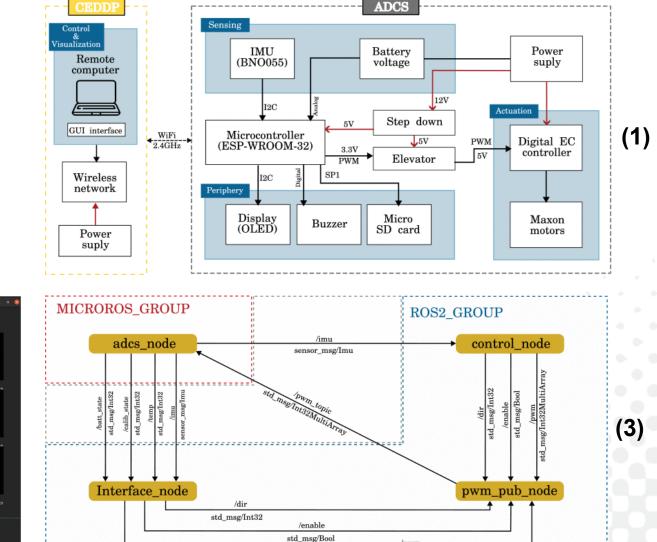
Valkyrie, 2023

Spheres, 2003

Astrobee, 2019

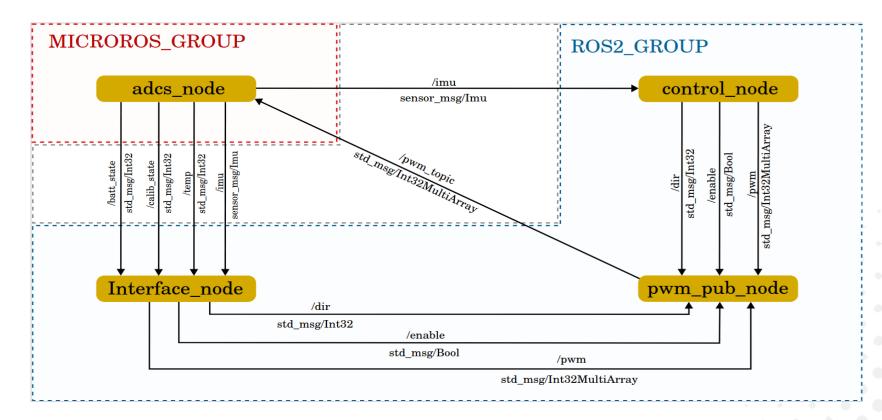
Terry Fong Presentation ROS in Space 2013

open
robotics


Experimental Setup

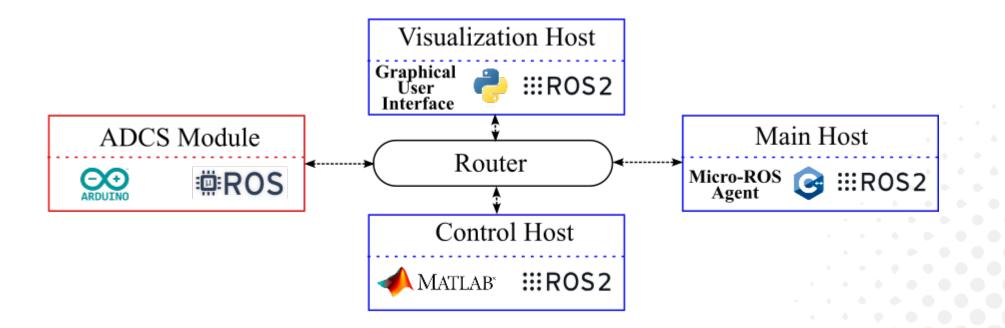
- (1) Hardware architecture
- (2) Graphical user interface(3) Software architecture

DESARROLLO DE UN MODULO ADOS ENO DE ALGORITMOS DE CONTROL DE ACTI EN CUBERATS DE OBRITA BAJA MU Orientation Plot (REACTION REACTION REACTION WHEEL 1 WHEEL 2 WHEEL 3 ACCEL ANGULAR ORIENTACION ORIENTACION BATTER Gyro X : 0.0022 Quatw : 0.9774 Quatx : 0.0001 Quaty : 0.0009 Quatz : -0.2116 25 °C 100% Pitch : -0.0625 Gyro Y : 0.0000 Roll : 24.3750



/pwm

std msg/Int32MultiArray



Software Architecture (preliminary designed)

Software Architecture (under development)

	Evalı Se	n	(1) Mensaje Loss (2) Latency (3) Periodicity						12 2 10		Scenario Setup 1 Setup 2 Setup 3	A->B 0/1000 0/1000 0/1000		000	C->D 9/1000 0/1000 0/1000 Setup 1 Setup 2 Setup 3	(1)		
	Setup 1		Function Parameter Custom Setting					Latency (ms)	8 - 6 -		\square	\wedge						
Function QoS profile	Publisher function (A e REALIABLE		ber callback ELIABLE	(B) <u> </u>		History]	KEEP_LAST		Later	- + Late				2		4	
Function QoS profile	e Listener function (D)	,	er callback (CELIABLE	C)	ALL	Depth		2			2 - 1							
	Setup 2					Reliabilit	•	EST_E			0		200	400 Sample	600	800)	
Function QoS profile	Publisher function (A e BEST EFFORT		ber callback ST EFFORT			Durabilit	У	VOLA		_				(a)				(2)
Function QoS profile	Listener function (D) e BEST EFFORT	/	er callback (ELIABLE		micro-RO			ROS2			12 - 10 -	$ \rightarrow $		\frown	\wedge		$\setminus /$	\ /
Setup 3						publisher	subscribe	er		, (ms	8 - 7	7		Setup		YT		• •
FunctionPublisher function (A)Suscriber callback (B)QoS profileCUSTOMCUSTOM				adcs_node	function	callback	Conti	rol_node	Latenc	10 - 8 - 6 - 4 -			- Setup				•	
FunctionListener function (D)Timer callbacQoS profileCUSTOMCUSTOM						listener	timer	Dwm	pub_node		2 -							
Qos prome	e COSTOM		COSTOM			function	callback				Ö		200	400 Sample	600	80	0	
														(b)				
				Parameter					Parameter									
Entity	Metric Avg.	St. d	Min.	Max.	Entit	y Metric	Avg.	St. d	Min.	Max.	_	Entity	Metric	Avg.	St. d	Min.	Max.	
	Frec.(Hz) 100.123	0.910	99.415	101.712	А	Frec.(Hz)	97.307	1.928	93.396	100.292	_	А	Frec.(Hz)	100.213	1.024	99.318	102.304	(3)
	Frec.(Hz) 100.007	0.0202	99.935	100.073	B	Frec.(Hz)	96.993	0.342	96.450	97.756	_	В	Frec.(Hz)	99.982	0.021	99.937	100.011	(3)
С	Frec.(Hz) 99.100	0.001	99.996	100.001	С	Frec.(Hz)	99.998	0.006	99.969	100.010	_	С	Frec.(Hz)	100.002	0.002	99.999	100.009	5

2.125

94.230

91.491

98.441

Frec.(Hz) 99.887

D

0.634 99.318 101.365

D

Frec.(Hz)

 C
 Frec.(Hz)
 100.002
 0.002
 99.999
 100.009

 D
 Frec.(Hz)
 100.032
 0.725
 99.318
 101.610

Conclusions

The proposed preliminary software architecture demonstrates the feasibility of adopting the Space ROS framework for nanosatellite applications, particularly in the development of ADCS modules.

By implementing and validating this architecture on an educational CubeSat platform using ROS 2 and micro-ROS, show that it is viable and scalable for future use in real space missions.

This work contributes to the ongoing efforts to expand and mature Space ROS, promoting the development of modular, reusable, and standards-compliant flight software for the next generation of space systems.

• Thanks

