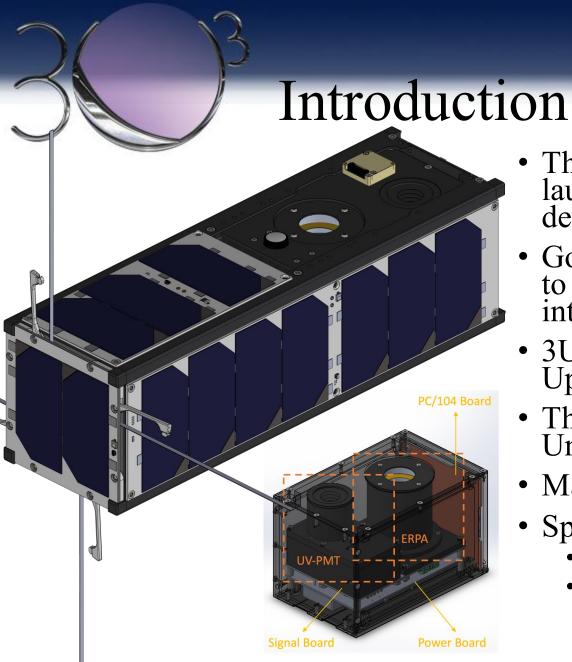
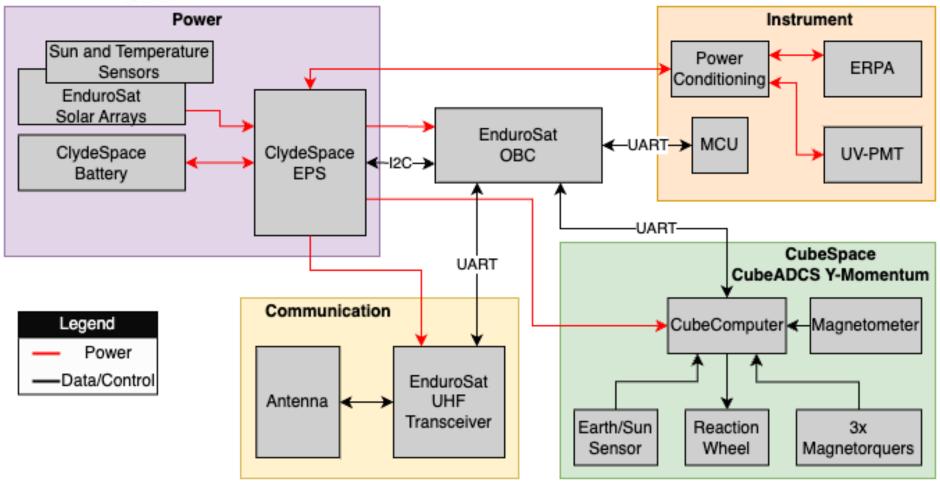


3UCubed: IMAP Student Collaboration CubeSat Software


Presenters: Jack Schneider, Anthony Santos, Jayme Brannan

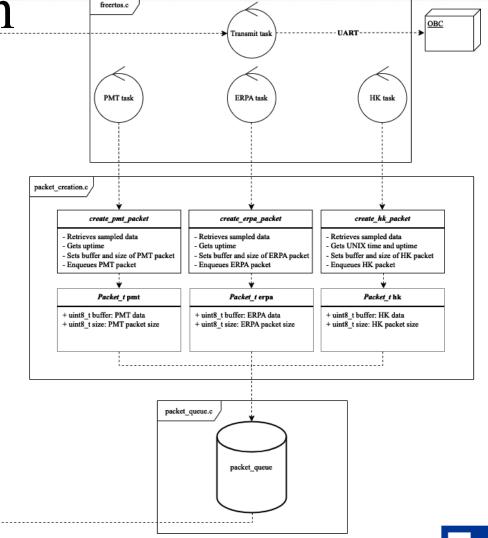
Contributors: Damian Fowler, Jared Morisson, Shane Woods, Michaela

Power, Jared King, Sanjeev Mehta, 3UCubed Team

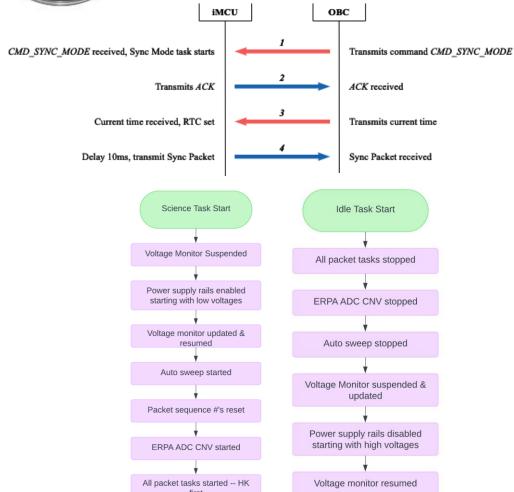


- The IMAP Student Collaboration goals are to build and launch a 3U CubeSat, augment IMAP science return, develop hands-on research experience for students.
- Goal: to understand how Earth's thermosphere responds to particle precipitation and solar wind forcing and internal magnetospheric processes.
- 3UCubed: 3 Universities; 3 CubeSats; Upwelling, Uplifting Undergraduates
- Three universities: Sonoma State University, Howard University, University of New Hampshire
- Manifested for launch on Transporter-15
- Spacecraft
 - Two instruments, combined size ≤ 1.5 U
 - COTS subsystems for S/C bus

Subsystem Overview



Instrument Design


- Two Science Instruments:
 - Ultraviolet-Photo-Multiplier-Tube (UV-PMT)
 - Electron Retarding Potential Analyzer (ERPA)
- Instrument Microcontroller Unit (iMCU):
 - STM32 microcontroller
 - Collects analog data using onboard ADCs
 - Packetizes the data into telemetry formats
 - Sends raw packetized data to the Onboard Computer (OBC) over UART

Instrument Operation

- Operation Modes Triggered by Onboard Computer
 - Sync Mode
 - Syncs instruments' RTC with OBC
 - Sends version info + error counters to OBC
 - Science Mode
 - Turn on and monitor power rails
 - Analog data collection from sensors
 - Sends Housekeeping, ERPA, and PMT packets
 - Idle Mode
 - Powers down sensors and voltage rails
 - Halts data collection
 - Low-power (Sleep) Mode
 - A low power state that halts the MCU
 - Wakes on OBC command

Instrument-OBC Interface

- Instrument and OBC communicate over UART
- Commands from the OBC are singlebyte instructions
- Instrument data split into and sent as binary packets
 - o Each ERPA packet: 14 Bytes
 - Sent every 3.125ms
 - Each UV-PMT packet: 10 Bytes
 - Sent every 62.5ms
 - o Each Housekeeping packet (HK): 48 Bytes
 - Sent to OBC every 100ms

ERPA Packet

SYNC	UPTIME	SEQ	SWEEP STEP	SWEEP MON	ERPA ADC
Fixed 2-byte hexadecimal	4-byte uptime in ms	3-byte packet counter	1-byte sweep step	2-byte sweep monitor	2-byte ERPA ADC reading

UV-PMT Packet Structure

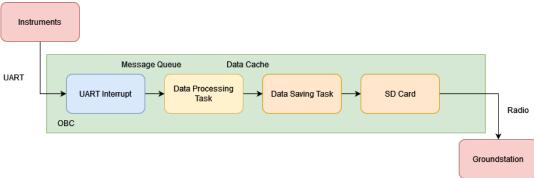
SYNC	UPTIME	SEQ	PMT ADC
Fixed 2-byte hexadecimal	4-byte uptime in ms	2-byte packet counter	2-byte PMT ADC reading

Housekeeping Packet Structure

SYNC	RTC	UPTIME	SEQ	МСИнк	Vmon x8	TMP x5
Fixed 2-byte hexadecimal	6-byte RTC in UTC	4-byte uptime in ms	2-byte packet counter	8-bytes of MCU Housekeeping	2-byte Voltage Monitor ADCs	2-byte On- board temp sensors

GSE for Instrument Testing

- Custom PC-based GUI
- Control of iMCU over UART
- Displays live packet data from ERPA, PMT, and Housekeeping
- Monitor voltage levels, sensor output, and system status
- Validate and debug firmware and sensor operation before satellite integration



On Board Computer (OBC)

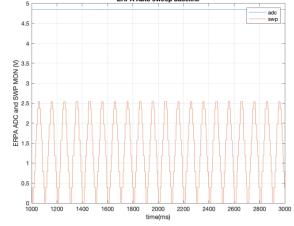
- COTS- EnduroSat's OBC
- Flight software built upon EnduroSat's SDK
- Manages commanding and collecting telemetry, onboard logging, file system, and timing
- Interfaces with all subsystems: Instrument, ADCS, EPS+Batt, Transceiver
- Instrument data is processed on-board and saved on an SD card before being downlinked
- Note:
 - Has inter-thread communication and event-driven scheduling
 - Handles UART with interrupt limitations and buffering logic

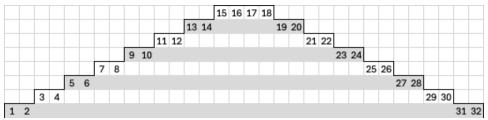
Instrument Data Post Processing on OBC

PMT

Averages two raw samples to one post processed sample

ERPA


- Averages 4 raw samples per sweep step to one post processed sample
- 32 samples are averaged to 8 sample, one per sweep step
- Eg. AVG[1,2,31,32] output ADC0


 NOTE: Processed Instrument packets are stored

in corresponding buffers to reduce write times.

SEQ	PMT_ADC
Fixed 2-byte hexadecimal	Averaged PMT ADC

PMT Processed Packet

ERPA processing Technique

SEQ	SWP0+ADC0	SWP1+ADC1	SWP2+ADC2	SWP3+ADC3	SWP4+ADC4	SWP5+ADC5	SWP6+ADC6	SWP7+ADC7
Fixed 2-byte hexadecimal								SweepMon and ADC for Step7

ERPA Processed Packet

iMCU and OBC- Error Handling

Instruments

- iMCU monitors power rail voltages, temperatures, ECC...
- iMCU generates an error packet, sends it to OBC, and turns the instrument off

OBC

- Tracks error packets from iMCU
- Logs previous and current error packets
- Can request last known error data for debug or telemetry
- Re-attempts failed packet commands (e.g., sync and version)

Missing Packets

- Packets have the possibility of not being received or corrupted.
- Ranges of missing packets are recorded. <u>Reduced</u> write times from writing every missed packet.

Missing Files

- Store the associated reported missing sequences.
- After processing has finished, the missing packet seq # are appended to the instrument file

```
00 00 00 00 00 00 00 00 00 00 00 02 00 5c 05 1b dd dd 38 6e 73 38 03 8e 00 00 00 0e 00 00 02 fa 05 e9 0d 51 00 3a 0c 17 0e 8c 0f 16 0e dd 00 00 0e 83 0e 3f 0c 86 01 92 01 93 01 96 01 97 00 00 ff ff 00 00 04 a5 00 00 00 0e ee ee 00 00 09 e7 00 00 00 00 00 13 00 00 ee ee 00 00 22 53 00 00 02 01 02 01 00 13 ee 57 ee ee 00 00 2e 88 00 00 03 01 01 e9 f7 3d ee ee 00 00 3a c5 00 00 04 02 01 ea
```

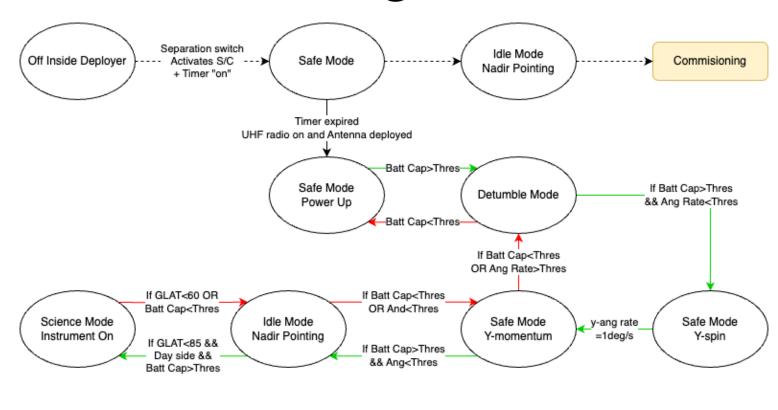
Missing Sequence - Picture showing sequences missing the sequence number 1

```
01 81 01 81 01 82 01 83 08 f2 ee ee 00 00 04 15 00 00 00 00 13 00 00 ee ee 00 00 0f ca 00 00 01 00 01 00 13 ee 83 ee ee 00 00 1b fa 00 00 02 01 00 13 f7 47 ee ee 00 00 28 2f 00 00 03 01 00 13 f7 56 ee ee 00 00 34 6e 00 00 04 02 01 ea f7 5b
```

Correct Sequence - Picture showing sequence 0 through 4

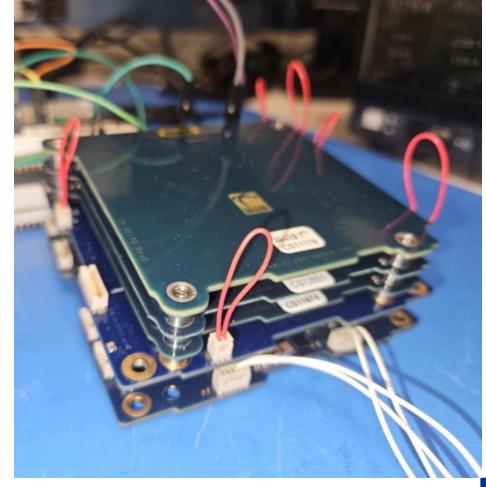
ConOps

- The OBC goes into different conops states depending on the status of the satellite:
- Safe: Power up/Error
- **Detumbling**: angular rates > threshold
- Communication: Ground station in range
- Science: Spacecraft in region of interest
- Idle: Default state
- Additional sub-states to manage smooth transitions and a variety of conditions.



ConOps – Commissioning & More

- The OBC manages ConOps states by tracking subsystem thresholds.
 - ADCS— angular rates, body angles, LLH
 - Battery- Charge Capacity
- UHF Transceiver & Antenna deployment delay
 - post-launch initialization
- Daily system-wide Power cycle
 - Reboot for memory reset



Electrical Power System (EPS)

- Clyde Space EPS & Battery
 - Communicate via I2C Bus
- Telecommands request data and command the EPS & Battery
 - Write commands: establish events
 - Read commands: return telemetry
- Telemetry data allows the OBC to monitor the EPS and Battery state

EPS Integration Testing

- Custom driver to support constant communication between EPS & OBC based on SDK's system datacache and ConOps
- Reworked SDK datacache structure and data handling to support ClydeSpace EPS.
- System Testing:
 - OBC periodically requests EPS Data (Board Status, PDM Volt./Curr., etc) via I2C bus.
 - Response is stored in Datacache
 - Other tasks request current caches
 - i.e. Battery Capacity for Conops
- All EPS+Batt Telemetry is stored in data cache and eventually in telemetry files.

Thank you

Any Questions?

