

AMES RESEARCH CENTER

with The Aerospace Corp.

SPINSAT SpinSat:

A Novel Variable-Gravity-and-Radiation-Exposure Platform for Deep-Space Science: Payload Development and Science Opportunities

> Tony Ricco, Jessica Lee, Jay Bookbinder – NASA ARC Mark Looper – The Aerospace Corp. SpinSat Ideation and Implementation Teams

A Driving Science & Tech Gaps, Challenges

Fundamental Science

Biological and physical scientists need access to combined deep-space radiation + planetary gravitation...

> ...to study basic processes and measure effects and impacts on biological and physical systems.

Human Health & Performance

Human health and accompanying biome effects are poorly understood for long-duration exposure to deepspace radiation & reduced gravity

beyond-LEO experiments needed to understand/manage/mitigate effects on health and performance, including impacts on/from relevant biomes.

Technology Development for Deep Space Missions

Environmental control & life support, food production, other systems must perform in novel, challenging environments

> technology development and validation benefit from frequent access to relevant environments with controls

SpinSat Deep-Space Platform Concept

Develop innovative, low-risk platform to address critical science gaps and technology maturation needs for deep-space exploration:

Emulate planetary radiation-plus-gravitation environments for experiments

Key Objectives & Approach

- Beyond-LEO deployment: lunar, transit-to-Mars, and Mars-surface radiation-plus-gravity environments
- Multi-payload platform: science experiments, model validation, tech development, risk reduction
- Technical approach (led by NASA/Ames, in cooperation with the Aerospace Corp.)
 - Platform: Inspired by Aerospace's (non-spinning) DiskSat, a rideshare-friendly cubesat alternative
 - Avionics: high-TRL / off-the-shelf components + avionics heritage from NASA Ames' *BioSentinel* spacecraft (deep space, now 63 Mkm from Earth, ~2.5 years operation to date)
 - Artificial gravitation: spinning platform \rightarrow 0.17xg and 0.38xg, along with 1xg controls
 - Relevant radiation: tailored shielding \rightarrow lunar or Mars-like environments, also deep space
 - Up to 64U of payloads

Current capabilities for combined radiation and gravity research are limited

- Terrestrial and ISS-based centrifuges do not operate in deep-space radiation environments
- ISS provides "noisy" microgravity and partial gravity, but durations and gravity levels may not meet many deep-space mission planning needs
- Terrestrial particle accelerators are 1xg and impractical for long-duration/chronic radiation exposure testing
 - biological responses (and even some electronic component effects) are often dose-rate dependent, not just total dose

National Academies Echoes the Need...

US National Academies:

"...The research opportunities that are envisioned to exist within *cis-lunar space are expected to be severely limited in volume and frequency. This sets an interesting conundrum where some critical research cannot be met with the current deep space platforms*, yet they would richly inform human exploration beyond LEO during the Artemis missions."

... and SpinSat responds:

A range of combined partial gravity and deep-space radiation exposure experimentation in a low-cost platform with 1xg experimental controls can:

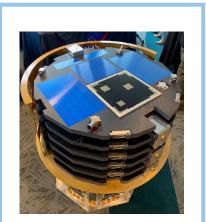
- **Increase relevant flight opportunities** at lower cost for key experiments relative to platforms/destinations such as Gateway, lunar surface, Mars surface, etc.
- Support both **new and existing experimental designs** and payload hardware
- Provide a complement and partial **successor to ISS**'s LEO capabilities

SpinSat's Responsive Design Objectives

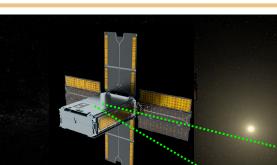
- **O-1** Simultaneous long-duration exposure (weeks $\rightarrow > 1$ yr) to combined deep-space/lunar/ planetary radiation and gravitation (0 $\rightarrow 1$ xg)
 - Spinning spacecraft provides artificial gravitation
 - Custom shielding simulates lunar, Mars radiation environments

O-2 Low cost per experiment

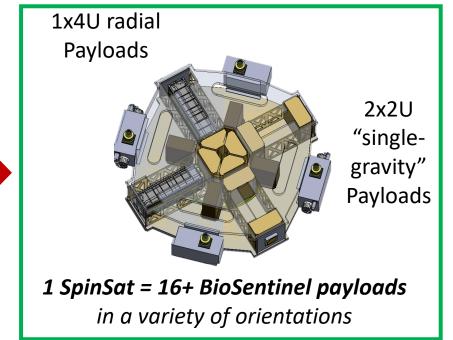
- Many experiments can be hosted on each platform flight
- Multiple experiment al replicates \rightarrow enhanced statistical significance


O-3 Frequent space access:

- Launch vehicle and orbit agnostic (beyond van Allen belts)
- O-4 Easy payload interfaces: highly familiar "Cubesat" type
 - Other configurations supportable, not a priori precluded
 - Power, data, comms, gravity, radiation, benign thermal environment
 - Pls can focus on the experiment, not the spacecraft
- O-5 Easy payload integration and responsive access
 - Stretch: "just-in time" loads for biology shortly prior to launch



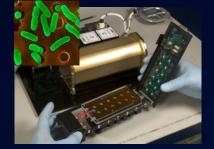
Platform architecture



DiskSat: A new spacecraft form factor (NASA SSTP/ Aerospace Corp.)

Avionics, bio payload components & design

BioSentinel: Proven design for deep-space biology missions: avionics, microfluidics, other science elements (NASA/Ames) Platform enables more science per \$

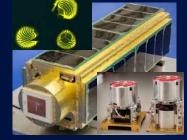


SpinSat platform provides experiments with all necessary infrastructure: power, thermal environment, data storage, communications, acceleration and radiation monitoring, etc.

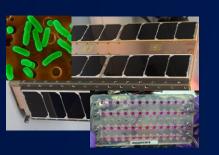

NASA/ARC Heritage and Precedents: Smallsats & Biological Cubesats

2006

- *E. coli* (bacterium)
- Microgravity effects on gene expression
- 12-well fluidic card
- LED-excited fluorescence for GFP expression, + LED light scattering for cell population
- 1st fully automated self-contained biological experiment on a cubesat



- S. cerevisiae (yeast)
- Microgravity effects on antifungal response
- 48-well fluidic card
- In-situ preparation of multiple drug dose levels from concentrate
- 3-color LED optical detection system
- alamarBlue indicator dye


2010

- *B. subtilis* (bacterium)
- 1st demo of 2 distinct experiment payloads on one autonomous satellite
- Microgravity & LEO + radiation effects
- 3-LED optical detection; solar UV- vis spectrometer
- 1st time dried organisms rehydrated in orbit: enables multitimepoint activation

2014

- *C. richardii* (aquatic fern spores)
- Variable gravity effects on spore germination *via* calcium ion transport
- 1st time artificial gravity capabilities in cubesat, 0 – 2x g
- 1st micro-centrifuges as well as Lab-on-Chip electrochemical sensors in a cubesat
- Deployed by resupply mission *en* route to ISS

2017

(uropathogenic

Microgravity effects

• 48-well fluidic card

detection: variable-

dose drug delivery

• 6U format for 50%

more solar power

deployed from ISS

• 1st bio cubesat

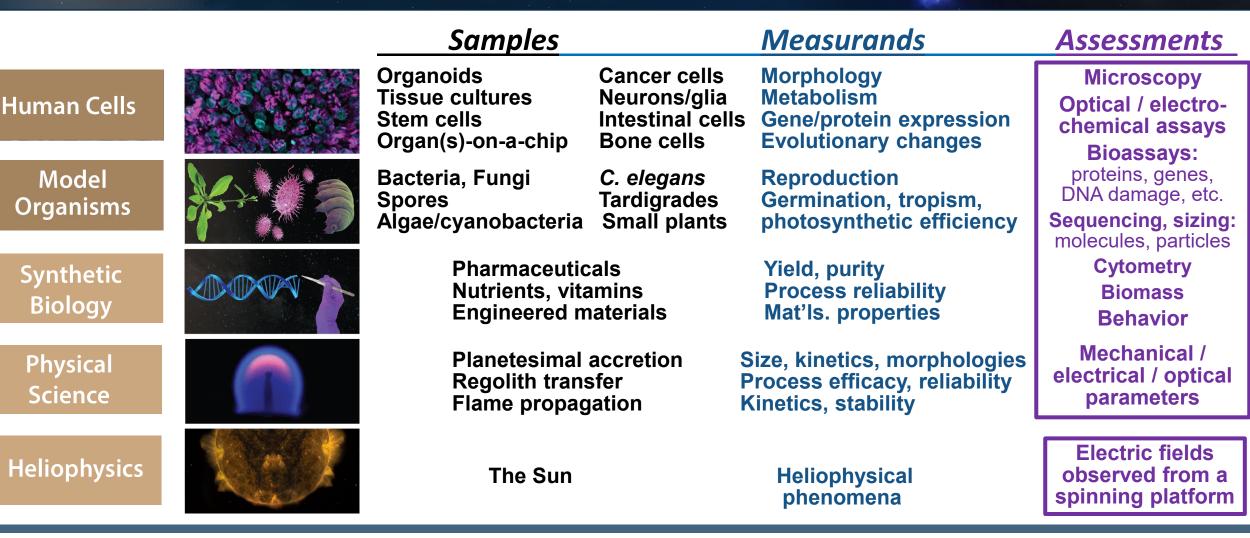
bacterium)

on antibiotic

3-LED optical

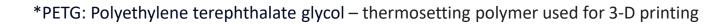
response

• E. coli

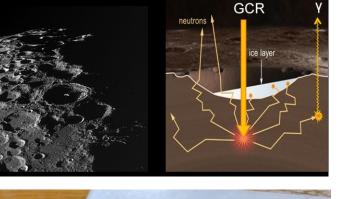


- S. cerevisiae (yeast)
- Microgravity & deepspace radiation effects on DNA damage/repair
- 1st use of monolithic multilevel fused manifolds
- 18 x 16-well cards: 288 samples
- 1st deep-space bio cubesat: 2° payload on Artemis-1
- Onboard radiation spectrometer (LET)
- 8

NASA

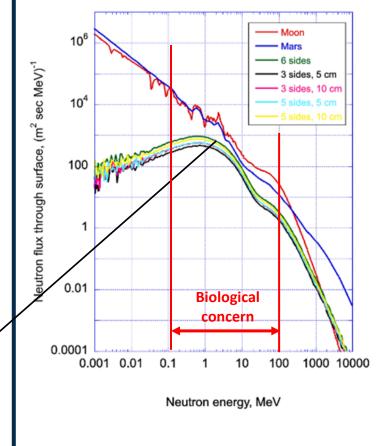


Biological Science Opportunities

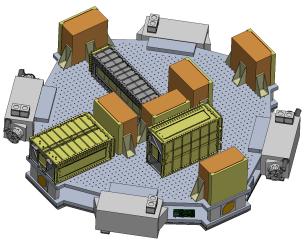


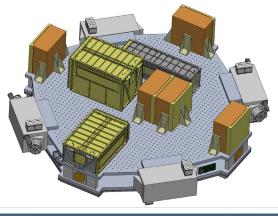
Simultaneous Mars/lunar gravity to 1xg+ accelerations simultaneously with deep-space, lunar, and/or Mars radiation environments

SpinSat Radiation Environments

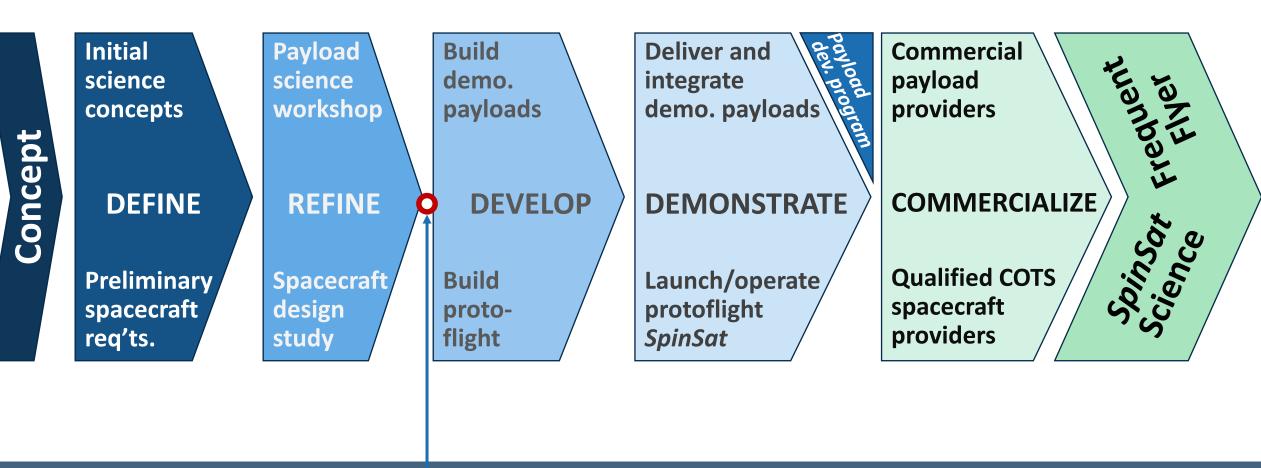

Aerospace conducted a detailed study on simulating Moon and Mars surface radiation environments:

- Tungsten cube (6 mm) array in PETG matrix
- Provides close approximation to Moon & Mars surface radiation in range of interest
- Tailorable radiation flux via cube arrangement
- Simple external mounting to payload housing
- LEO re-entry/breakup safe


GCR protons, 1 cm Al-equiv. W, channel/cup

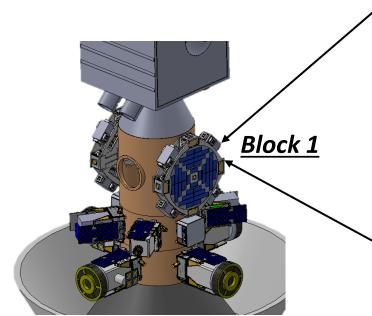


Rocket Lab 6U


EXOpod 8U (deployed)

- Primary spacecraft structure composed of a dual deck sandwich design
 - Top deck hosts payloads
 - Bus avionics housed internally between decks
 - Minimizes design changes needed for payloads across missions
- Thermal management achieved by isolated sun-facing solar array structure
- Propulsion uses Hall-effect thrusters for spin-up and electrospray thrusters for attitude control
- Attitude-determination-and-control system based on flight-proven *BioSentinel* high-TRL components

SpinSat Path to Flight

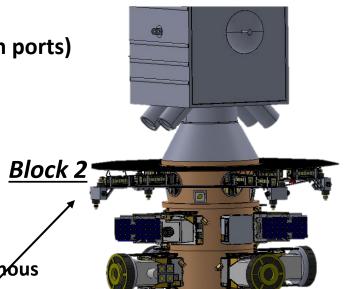

Today 2026

SpinSat Technical Approach

<u>Technical Approach</u>: Phased to enable rapid validation of overall strategy & execution of initial experiments, followed by refinement and larger platforms, while remaining cost effective:

As an ESPA-port secondary, SpinSat accommodates up to 64 'U' of experimental payloads (16x BioSentinel)

Operational Demo (LEO/sun-sync. orbit):


- Simultaneous Lunar, Mars, & Earth Gravity
- Compatible with ESPA Grande Ring (610 mm ports)
- 1.3 m Diameter; > 300W
- ESPA Port Mount: ~launch vehicle agnostic
- Common Simple Data Interface
- ~12 month lifetime

Block 1: Production Design (Deep Space)

- Up 64 'U' of payloads in various configurations
- Deep-space orbit or high-inclination sun-synchropous
- ~1 3 year lifetime

Block 2: Production Design (Deep Space)

- 3+m diameter, 2 kW, >300 'U' payload volume
- Deep space orbit (agnostic)

As an ESPA-stack secondary > 300 'U' (75x BioSentinel), allowing for a robust program of biological experiments

SpinSat as a Platform for Early Career Researchers

SPINSAT

- SpinSat can provide researchers a user-friendly platform for frequent and inexpensive Class D opportunities to continue technical innovation and to train the next generation of principal investigators & leaders.
- ✓ Spinsat payloads are ideal for both NASA and international projects at a range of levels

Students from the 2023 Climate Change Research Initiative

SPINSAT

Jay Bookbinder Pascale Ehrenfreund **Scott Richey Tony Ricco** Rob Ferl Anna-Lisa Paul Christine Mehner **Thomas Paige Richard Welle** Alberto Arredondo Mark Looper Jessica Lee Bruce Yost Randii Wessen

Code R MDC

PI / Capture Manager Science Lead (COSPAR President, former DLR Science Director) **Project Manager, programmatics** Payload instrument manager, biology, microfluidics Science, programmatics (BPS Decadal Co-Chair) Science, plant molecular biology (NAS CBPSS) Human biology & Cancer Senior systems engineer Senior S/C systems engineer S/C systems engineer **Radiation scientist** Science, microbiology Project management, programmatics Capture Management **Engineering (Mission Design Center)**

Ames Research Ctr. (ARC) GWU ARC ARC Univ. of Florida Univ. of Florida Premier research Aerospace Corp. Aerospace Corp. Aerospace Corp. Aerospace Corp. ARC ARC ARC ARC

Funding from NASA's Ames Research Center and the NASA Mars Campaign Office