

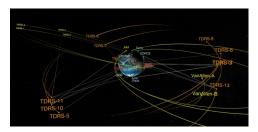
NASA Small Spacecraft Technology Program

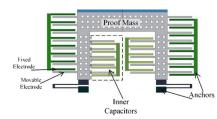
Subsystems Design for a Suborbital Test of a Slot-Cavity Optomechanical Accelerometer

Wong group, Mesoscopic Optics and Quantum Electronics University of California, Los Angeles Presenter: Justin Tang

Talha Yerebakan, Justin Tang, Willson Luo, Alexiy Samoylov, Chee Wei Wong

Why do accelerometers matter?


SSTP mail Spacecraft Technology Program


Highly accurate accelerometers are a key component of **inertial navigation systems**, which decrease a space system's reliance on GNSS systems for positioning and navigation.

Two typical accelerometer designs: MEMS and piezoelectric. Can we do better?

 Our lab has developed accelerometers based on cavity optomechanics with several advantages (sensitivity, resolution, dynamic range) over traditional accelerometers.

An Apollo inertial navigation system before the advent of GPS

Source: [a]

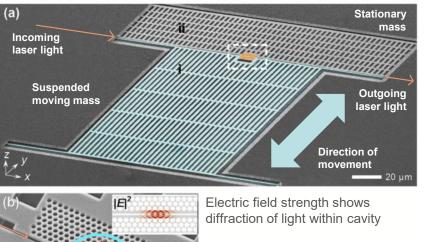
A modern example: communication with NASA's TDRS orbital fleet

Source: [b]

Part of a typical MEMS accelerometer design

Justin Tang | justin92618@ucla.edu

Source: [c]


The cavity optomechanical accelerometer

At the core of our optomechanical accelerometer is a stationary mass (gray), a moving mass supported on cantilever beams (blue), and a photonic chiplet (yellow).

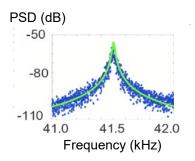
Incoming laser light enters the slot cavity and excites the chiplet, sending the moving mass into an oscillation with a known frequency (an **optical spring**). We say the laser light inside the cavity is **optomechanically coupled** to the moving mass.

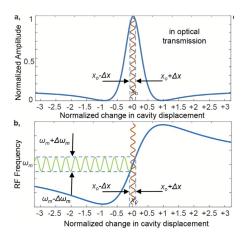
Any acceleration in the direction of movement changes the frequency of oscillation, creating a highly sensitive accelerometer!

A close-up view of our optomechanical accelerometer

Source: [1] (annotated)

-


The cavity optomechanical accelerometer


We can indirectly measure changes in the device's oscillation – and thus **transduce** acceleration measurements – by measuring the power spectral density of the modulated outgoing laser light.

The device itself, not including the lasers, can be hermetically packaged into a small form factor (around 3 cm^3).

So what's the catch?

Peak in the power spectral density of the modulated light from one device's oscillation

Source: [2]

Any displacement of the cavity from acceleration alters this peak in consistent ways ("RF shift")

Source: [2]

Justin Tang | justin92618@ucla.edu

The real world

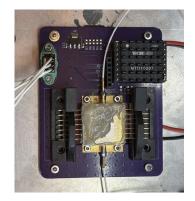
So far, our accelerometers have only been tested inside a controlled lab environment!

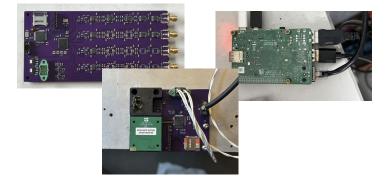
- Constant temperature, fine-tuned laser wavelength and polarization, easy data collection, etc.
- Not representative of real-world conditions: how can we make sure our accelerometers can function on an actual spacecraft?

Our group has planned a suborbital balloon test of three of these accelerometers on a suborbital Aerostar balloon flight in Q3 2025.

Goals:

- Demonstrate the independent function of our accelerometers at altitudes up to 30 km (100,000 ft)
- Compare the strapdown inertial navigation performance of our optomechanical accelerometers to that of reference MEMS accelerometers


-



How do we ensure that our optomechanical accelerometers are ready to fly on a suborbital balloon – or, in the future, a CubeSat or cislunar satellite?

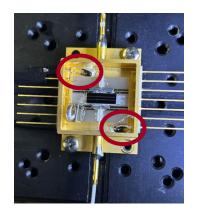
Temperature control

Polarization control

Readout systems and reference sensors

These subsystems lay the groundwork for future optomechanical devices to fly.

Justin Tang | justin92618@ucla.edu


Temperature control

Though the device can operate within a range of temperature levels, any **changes** in temperature will affect the resonance frequency and will be indistinguishable from a change due to acceleration.

- Simply controlling the temperature of the payload as a whole is insufficient!

Our devices are individually temperature compensated through a Peltier-effect thermoelectric cooler (TEC) that sits underneath each accelerometer package.

 Each package contains two thermistors on the inside to measure temperature, allowing a TEC controller to maintain temperature control within 25 mK

Inside of device package, with thermistors circled in red

Package placed in supporting PCB with TEC, TEC controller, and microcontroller

Polarization control

A mechanical fiber polarization controller with three degrees of freedom

Source: [e]

Prot to su elec cont

12

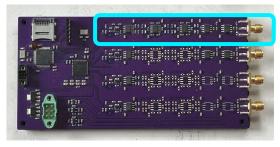
Prototype of a PCB to support an electric polarization controller

Our devices are also sensitive to the **polarization** of the input laser. Differences in polarization will cause losses in the power delivered to our accelerometer, which reduces its sensitivity.

A simple fiber polarization controller, and a strategy of taping down all optical fibers, is used in our current flight payload.

- We expect any possible drift in polarization to be negligible over a few hours of flight time
- For longer flights or missions, this cannot be assumed an electric polarization controller must be used to maintain a consistent polarization state

Readout systems and reference sensors



Photodetectors and signal conditioner board

- Photodetectors measure output laser power transmitted through device and turn it into an electrical signal
- Signal conditioner uses analog bandpass filter to isolate only the power associated with each device's oscillation (in the tens of kHz, but varies per device)
- Frequency counter then outputs frequency of oscillation (the "peak"), which can later be converted into an acceleration

Conventional sensor board

- Houses MEMS inertial measurement unit, a basis for reference with our optomechanical accelerometers
- Also provides a way to evaluate the strapdown inertial navigation performance of our accelerometers

Signal conditioner board (filters for one accelerometer axis highlighted)

Conventional sensor board (MEMS IMU in bottom left)

Readout systems and reference sensors

Raspberry Pi

- Streams in data in 1024-byte packets over USB from signal conditioner and conventional sensor boards
- Closely integrated with balloon flight: logs GPS readings and transmits mission data to the ground using balloon's Ethernet interface

Key design paradigm: robust logging and backups

- In addition to transmitting data, all readout systems save data and timing information to microSD cards
- Additionally, to ensure that problems don't arise in writing to a single large file, these systems frequently rotate between smaller files

Raspberry Pi with microSD card and USB connections

43386.232179	>	1503061265.932082	43.700367	-96.707753	430.825000
43387.223255	>	1503061266.921962	43.700367	-96.707752	430.893000
43388.212417	>	1503061267.911860	43.700367	-96.707751	430.930000
43389.203704	>	1503061268.901759	43.700368	-96.707751	430.957000
43390.191405	>	1503061269.881700	43.700368	-96.707750	431.007000
43391.162159	>	1503061270.851561	43.700368	-96.707750	430.924000
43392.141624	>	1503061271.841443	43.700368	-96.707750	430.956000
43393.218119	>	1503061272.911416	43.700368	-96.707750	430.947000
43394.201821	>	1503061273.891222	43.700368	-96.707750	430.917000
43395.181972	>	1503061274.881144	43.700368	-96.707750	430.976000
43396.170737	>	1503061275.871001	43.700367	-96.707750	430.880000
43397.160712	>	1503061276.860893	43.700368	-96.707750	430.920000
43398.150613	>	1503061277.850773	43.700368	-96.707750	430.982000
43399.142387	>	1503061278.830680	43.700368	-96.707751	430.966000
43400.220595	>	1503061279.920563	43.700368	-96.707751	431.050000
43401.211281	>	1503061280.910443	43.700368	-96.707751	431.187000
43402.190701	>	1503061281.890389	43.700367	-96.707752	431.349000
43403.170051	>	1503061282.870240	43.700367	-96.707752	431.465000

Sample of timing and telemetry data stored on the Raspberry Pi

Justin Tang | justin92618@ucla.edu

Next steps

- Launching and evaluating the suborbital balloon flight (scheduled for Q3 2025)
 - Includes comparing performance of our accelerometers vs. MEMS accelerometers
- Adapting the payload to a smaller form factor, such as one that can fit in a CubeSat
 - Main task: optimizing the electronics that support and read data from the accelerometer, including power supplies, lasers, and subsystems

Eventual deployment in CubeSats, small satellites, and cislunar satellites

- Position, navigation, and timing systems are often auxiliary to a spacecraft's mission, and mass/volume is a critical consideration for spaceflight
 - A CubeSat would be an especially attractive deployment environment to show that an optomechanical-accelerometer-based IMU can be supported without taking up too much volume or mass

Acknowledgments and sources

We would like to acknowledge support from NASA's Small Spacecraft Technology Program (Project No. 80NSSC20M0082).

Sources

[1] Huang, Y. et al. "A chip-scale oscillation-mode optomechanical inertial sensor near the thermodynamical limits" (2020).

[2] Flor Flores, J. G. et al. "Parametrically Driven Inertial Sensing in Chip-Scale Optomechanical Cavities at the Thermodynamical Limits with Extended Dynamic Range" (2023).

Image sources

[a] Reinhold, A. "Apollo program Inertial Measurement Unit on display at the Draper Labs 2019 'Hack the Moon' exhibit" (2019).

[b] Elkins, K. "Tracking Data Relay Satellite (TDRS) Orbital Fleet Communicating with User Spacecraft 2017" (2017).

[c] Keshavarzi, M. "Design and optimization of fully differential capacitive MEMS accelerometer based on surface micromachining" (2019).

[d] Aerostar. "Thunderhead Balloon Systems".

[e] Thorlabs. "Manual Fiber Polarization Controllers".

Mesoscopic Optics and Quantum Electronics (MOQE) lab

Talha Yerebakan Justin Tang Willson Luo Alexiy Samoylov PI: Chee Wei Wong

NASA Ames Research Center

Michael T. Gaunce Samson Phan Rodolphe De Rosee

Justin Tang | justin92618@ucla.edu