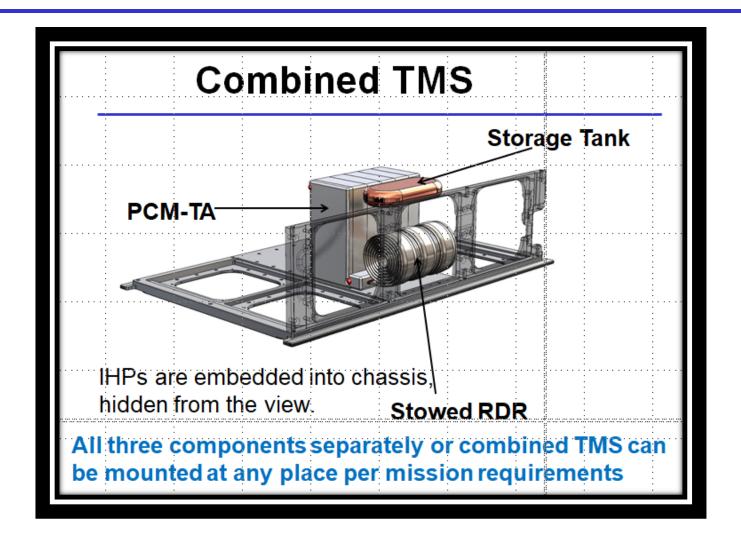
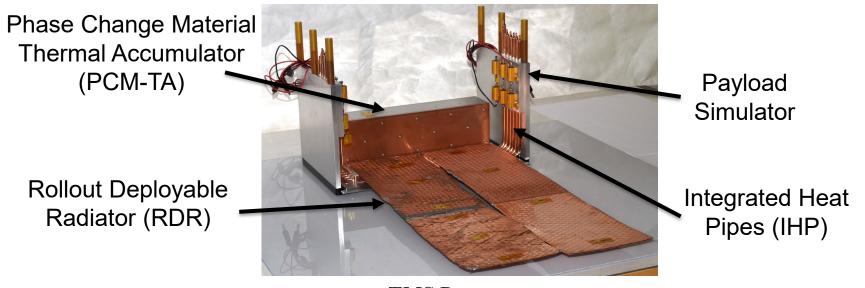
A novel thermal paradigm for SmallSats: Breakthrough in Design and Functionality

Boris Yendler (YSPM), Reif, A., Castrillon, S., Kalman, A. (Pumpkin Inc)


Introduction

- Driving Needs
 - High power payloads are in development for deployment on small satellites in the coming years, effective heat dissipation is required for sustained operation
 - No Commercial Off the Shelf (COTS) small satellite thermal control available
 - NASA's technology shortfalls highlights a demand for improved s/c thermal control and waste heat rejection
- Solicitation Requirement
 - To develop and to prove feasibility of thermal control technology with capabilities to dissipate up to 1kW in a small satellite form factor
- Our Solution
 - Multi-component thermal management system
 - Components are Modular, Scalable and Versatile

Our Dream - 2020 CDW



Thermal Management System (TMS)

- Consists of three components:
 - Rollout Deployable Radiator (RDR)
 - Structurally Integrated Heat Pipes (IHP)
 - Phase Change Material Thermal Accumulator (PCM-TA)
- Components can be used individually or jointly

TMS Prototype

affordable

customizable

scalable

www.pumpkinspace.com

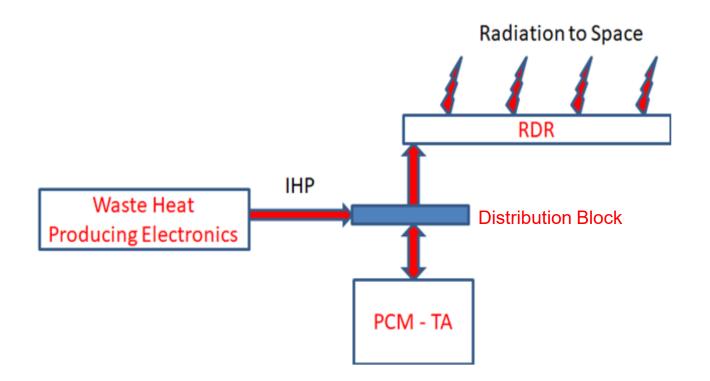
modular

light

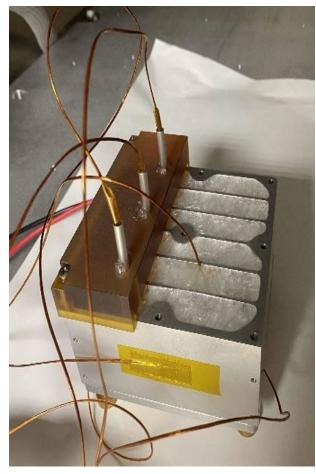
in depth satellite technical

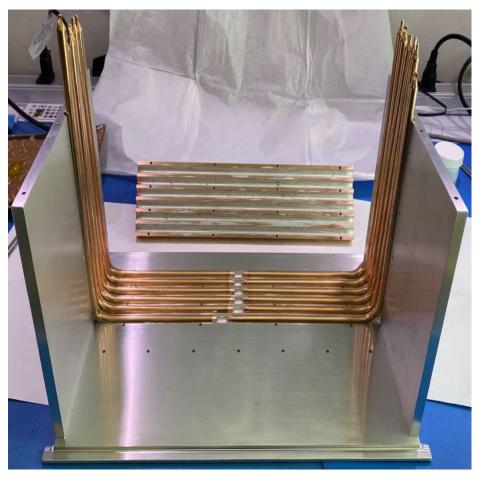
&proaram services

www.yspm.net

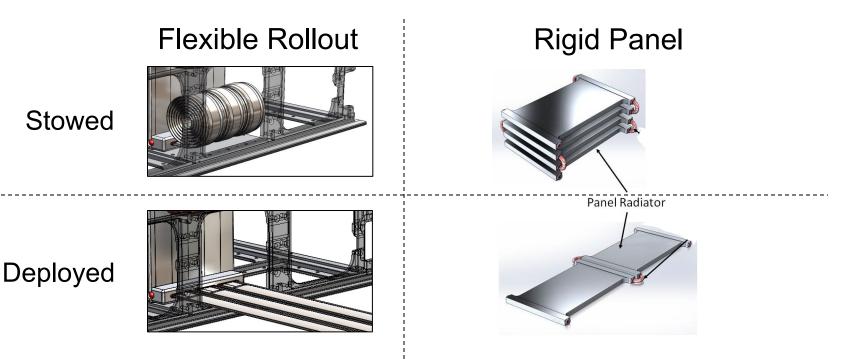

Thermal Management System (TMS)- cont'd

- Functions and Capabilities
 - TMS prototype units are able to reject 300 W of waste heat
 - Capable of rejecting 1 kW or more with multiple TMS units
 - Applicable to small satellites ranging from CubeSat to ESPA class* spacecraft
 - Can be scaled to mission requirements
 - Can be used together as a complete system, or separately
 - Provides a large radiative surface area with minimum storage volume
 - Minimizes thermal resistance between heat source(s) and radiative surfaces


* (EELV Secondary Payload Adapter, 200kg+)


Heat Flow Diagram

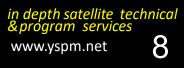
Phase Change Material Thermal Accumulator (PCM-TA)



Integrated Heat Pipes (IHP)

Deployable Radiators

- Efficient stowed volume •
- High thermal conductivity (heat pipe) •
- Efficient mass/power ratio (no • hinges)
- Scalable (width and length)


PUMP

 High thermal resistance across the hinges

Video RDR roll out goes here

Video 1: Rollout Deployable Radiator (RDR) demonstration – (click-to-play)

Rollout Deployable Radiator (RDR)

Rigid Radiator vs. RDR

parameter	rigid	RDR
Mass efficiency [kg/kW]	3.15*	3.54
Storage volume efficiency [m ^{3/} kW]	0.036	0.0022

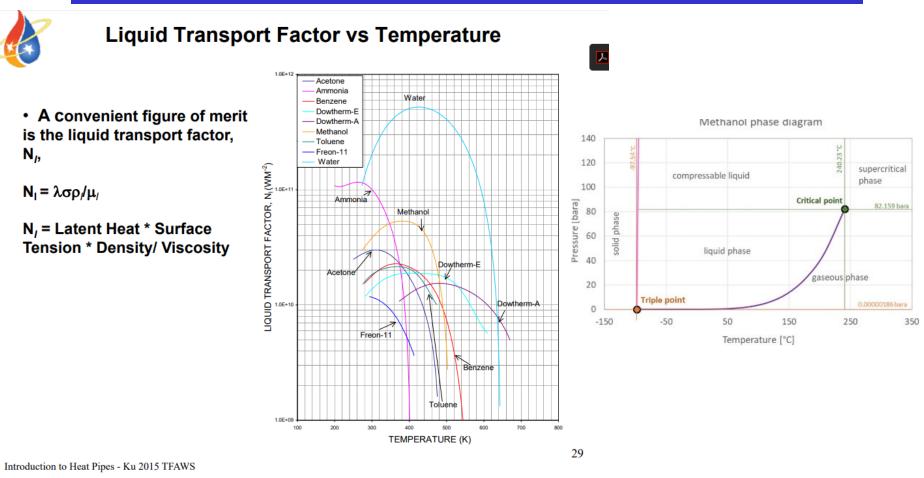

* Does not include hinges

Table 1: Rigid vs. RDR comparison

RDR is more volume efficient than traditional rigid radiator

Choice of working liquid for RDR

Methanol was the optimal choice

RDR development history

- Several different fabrication processes have been tested: Friction welding Epoxy bonding A/C welding Laser welding Ultrasonic welding Diffusion bonding
- Several different materials, in different gauges have been tested:

Aluminum Mylar laminates Copper Copper laminates

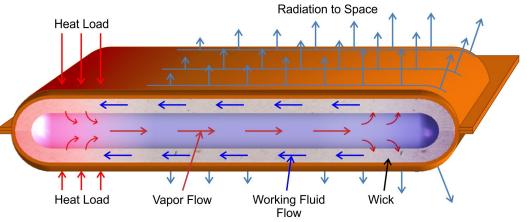
- Different vapor-core wick materials have been tested: Aluminum wool Copper wool Aluminum screen Copper screen
- Several different working fluids have been tested: Acetone Methanol

Only the design solution (in yellow) was successful, to date.

Earth without it	modul	ar	scalable	customizable
<in <sup="">™</in>	light	Re .	to and	
INCORPORATED	strong WWW.p	un	npkins	space.col

Don't leave

PUMP


affordable

ace.com

Flexible RDR Concept

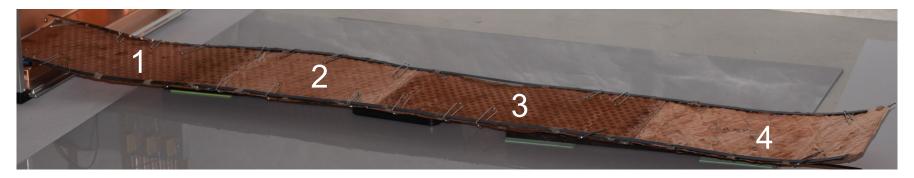
RDR is a roll-able thin 2-D vapor chamber

RDR Flow Diagram

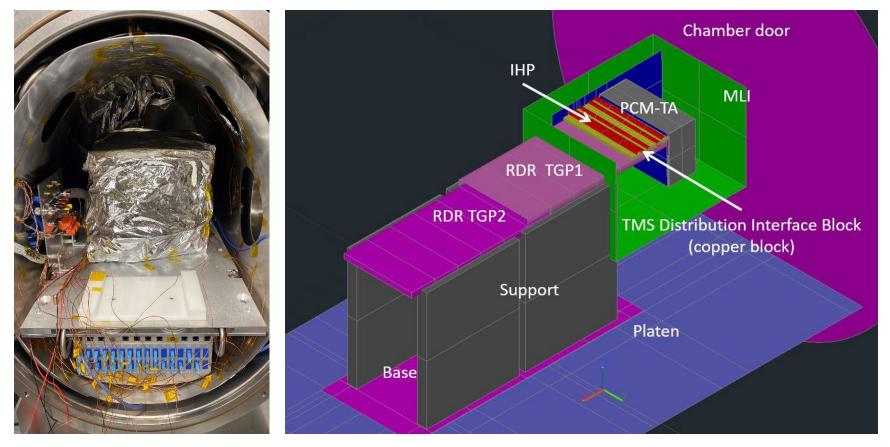
RDR Parameters

The RDR is a thin 2-D vapor chamber designed for optimized heat flow and dissipation to space

The Prototype RDR currently has the following performance characteristics:


- Thickness: 2.5mm
- Mass: approximately 3.3 g/cm³
- Flexibility: capable of bending with minimum radius of 50mm
- Length: scalable up to 1 m long
- Heat Flux Handling: effective performance 384 W/cm²
- Thermal Conductivity: effective thermal conductivity 1,500 W/mK
- Sustain internal/external pressure difference
- Will use methanol as the working liquid

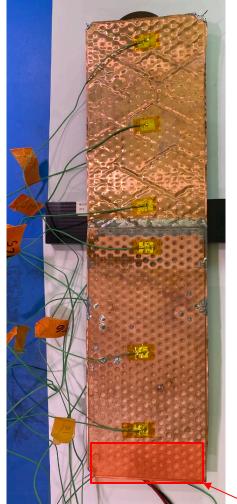
RDR daisy chain design

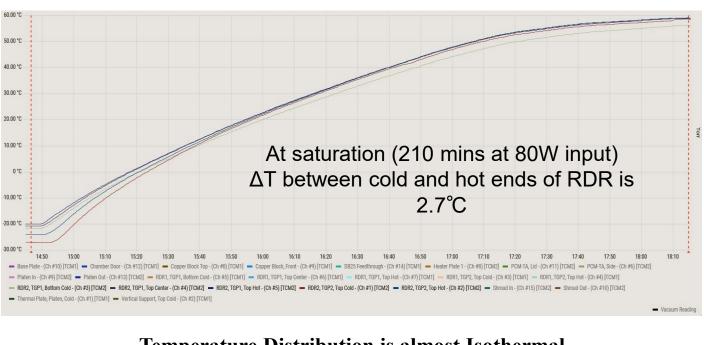


Daisy Chain prototypes

RDR testing - TV chamber

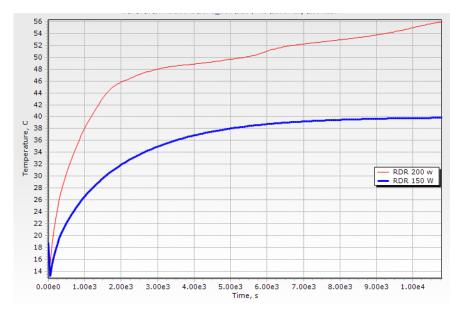
affordable


Thermo-Vacuum Chamber

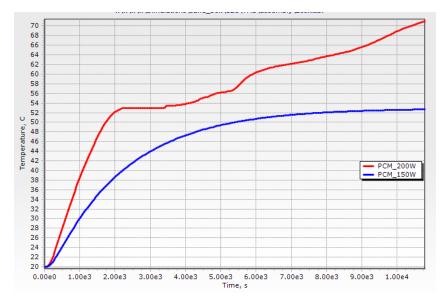

Prototype TV testing configuration (half system)

Results

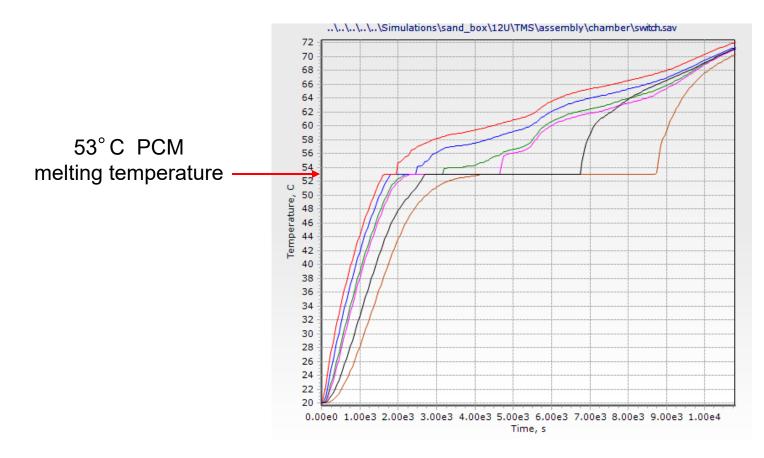
Temperature Distribution is almost Isothermal


Heater

light



Results - cont'd


Heat Pipe temperature at different heat loads: 150W (blue) & 200W (red)

PCM temperature at different heat loads: 150W (blue) & 200W (red)

Results - cont'd

Temperature trends inside of PCM- TA

TRL status

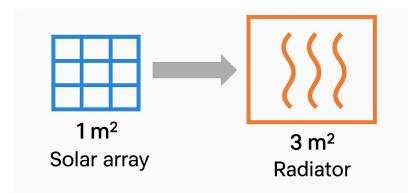
- Current status is TRL 5
 - Component and/or breadboard validated in relevant environment
- RDR will reach TRL 7
 - Based on successful TV test results and flight tests
 - Test over several orbits is required to demonstrate TMS efficiency and operational status
 - Flight tests requirements: 150 W of power, ~20 kg mass allocation, and 10 × 10 × 30 cm volume (~3U)

RDR Features

RDR offers significant improvement in spacecraft thermal control by overcoming heat transfer limitations.

- Key RDR features
 - Hinge-free design enables direct thermal pathways from electronics to space, significantly boosting heat rejection capacity
 - Multi-fold improvement in heat rejection over fixed radiators—enabling higher power generation and system performance
 - Adapts radiating surface area to mission requirements, removing thermal limitations

n depth satellite technica.


www.vspm.net

RDR Features – cont'd

- Key RDR features cont'd
 - Achieves a nearly 16-fold reduction in stowed volume compared to rigid deployable radiators.
 - Removes Energy Generation Constraints:

Satellite Energy Generation Is Bounded by Radiator Size:

assuming 50% generated energy is converted to waste heat, every 1 m² of solar array (energy generation 1300 W/m²) requires almost 3 m² of radiator (heat rejection 300 W/m²).

n depth satellite technical

www.vspm.net

Applications of TMS

- The TMS integrates thermal management with structural elements, significantly reducing overall mass.
- The TMS is modular, allowing it to adapt to various mission and system requirements while maintaining a low SWaP-C (Size, Weight, Power, and Cost).
- Its true "plug-and-play" capability enables seamless integration across different platforms without extensive engineering modifications.

n depth satellite technica

www.vspm.net

 The TMS is designed for batch production and additive manufacturing, supporting cost-effective scalability.

Applications of TMS – cont'd

- By reducing development and integration complexity, this technology expands the use of advanced thermal management solutions for lower-cost missions.
- The RDR provides maximum heat transfer efficiency while maintaining a lightweight design, offering a superior alternative to fixed radiators.
- The RDR features a hinge-free design, which significantly reduces thermal resistance between heat-generating components and the radiating surface. This maximizes heat transfer efficiency, ensuring that waste heat is transported as effectively as possible. Additionally, the hinge-free architecture minimizes structural mass, making the radiator lighter and more efficient for space applications.

Adaptation Beyond Conventional Missions

- **Enables More Powerful Satellite Functions**
- Higher power availability supports
 - advanced avionics, communication lasers, enhanced payloads, etc.

customizable

- Military Applications
 - Enables high-power lasers for satellite self-defense, improving spacecraft survivability

affordable

SatNews: "**US on high alert**" China's satellites display unprecedented combat maneuvers in space

in depth satellite technical www.yspm.net

Adaptation Beyond Conventional Missions-cont'd

Nuclear Space Power Integration

Supports space-based fusion reactors, such as:

- SNAP-10A (50W, U.S.)
- Topaz 1 & 2 (Kosmos 954, etc., USSR)
- NASA Kilopower (1-10 kW) ۲

6

Adaptation Beyond Conventional Missions-cont'd

- TMS can enhance nuclear technologies such as fission surface power and nuclear electric propulsion. These systems require efficient waste heat rejection at high temperatures (around 500 K).
- To adapt the proposed TMS for nuclear applications, the RDR should use
 - sodium as the working fluid for high-temperature applications (500 - 1200°C)
 - **potassium** for nuclear thermal propulsion (400 1000° C)
 - cesium (300 800° C)
 - lithium (900 1600° C)

Adaptation Beyond Conventional Missions-cont'd

- Modifications of other TMS components are required
 - Integrated Heat Pipes (IHP) should use different working liquid
 - Phase Change Material Thermal Accumulator (PCM-TA) should use high temperature PCM
 - Material used to build IHP and PCM-TA must withstand high-temperature environments

n depth satellite_technica

www.vspm.net

Conclusion

The TMS is a novel approach for satellite thermal management and can be applied to a variety of missions due to its flexibility, scalability, and modularity.

The TMS has been rigorously tested in both ambient and thermal vacuum conditions in a Test-as-you-Fly configuration. It is flight-ready, and only needs in-orbit demonstration to fully validate its performance, efficiency, and potential integration into future high-power satellite systems.

> <u>Contact for more TMS information</u>: Boris Yendler <u>byendler@yspm.net</u> Pumpkin Inc, info@pumpkinspace.com

