

Radiation Interference of CubeSat Structures and their Improvement

Dukmin Jang

2025-04-23

Cubesat Workshop Day 2

Research Background

Deploy Structures in CubeSat

- Placement constraints by restricted volume
 - Most cubesats must be standardized
 - Each components should be allocated in structure
- Using deployable structures
 - > To achieve diverse mission objectives
 - ✓ Deorbit devices, Space tether
 - > To overcome spatial constraints
 - ✓ Solar panel, Antenna pole ...

< Tether >

< Solar Panel Array >

< Antenna Poles >

< Deployable System(left), Deployable Components(right) for CubeSats (Sauder, 2021) >

Review of Previous Studies

- ◆ Radiation interference in GOMX-3 cubesat
 - Space constraints
 - ✓ UHF dipoles and L-band patch allocated in same direction, closely
 - The UHF dipoles interfere L-band patch antenna radiation
 - ✓ Gain peak drops : 0.9dB
 - ✓ AR(Axial Ratio) deteriorate

< Radiation pattern of the L band patch antenna in GOMX-3 without UHF dipole antennas(Cappellin, 2020) >

< Antenna allocations of GOMX-3 cubesat(Cappellin, 2020) >

< Radiation pattern of the L band patch antenna in GOMX-3 with UHF dipole antennas(Cappellin, 2020) >

Purpose of the study

Radiation Interference

- There are deployable structures which can affect radiation of UHF antenna in TTNC system
- Radiation Measurement in far field chamber
- Radiation **Simulation**(Ansys HFSS)

Improve Performance

- Minimize radiation interference
- Improve directivity by using radiation interference
- Analyze radiation
 - Radiation with/without deployables
 - Gain, AR, S11 changes

Achieve Requirements

- Achieve Link margin > 6dB
- Achieve **Datarate** for UHF > **2400bps**, S-band > **1Mbps**

Improve radiation performance Achieve requirements for operation

Astrodynamics and Control Lab.

< 3U Architecture (Won, 2022) >

태양 센서

GNSS 안테나

ADCS 모

전력 제어 및

배유닛

3축 반작용 휠

자기장센서

UHF 안테나

S 대역 수신기

레이저 감지기

< 3U Initial Configuration (Won, 2022) >

태양전지판

탑재컴퓨터 & UHF 송수신기 & GNSS 수신기

S 대역 안테나

박막 전개장치

3U Cubesat TTNC System

***** TTNC System Design

- Establishing a communication link
 - Link Margin > 6dB \triangleright
- Data rate decision based on data budget
 - UHF bitrate > 2400bps, S-band bitrate > 1Mbps
- Operates within the frequency bands assigned by the ITU

UHF : 436.5 MHz, S-band : 2403.5 MHz

< Electromagnetic Spectrum >

< Frequency bands used by 120 CubeSats (Liu, 2022) > **Astrodynamics and Control Lab.**

	UHF Transceiver	S-band Transmitter		
Model	Gomspace AX100	Pulsar STX		
Operating Frequency	436 MHz	2403.5 MHz		
Modulation	GFSK	QPSK		
Bit Rate	4800bps	2Mbps		
Protocol	CSP	IESS-308E11		

< 3U Transceiver / Transmitter Specifications >

	UHF Antenna	S-band Antenna		
Model	ISIS Antenna System	Pulsar SANT		
	i ji			
Туре	Turnstile	Patch		
Polarization	RHCP	LHCP		
Peak Gain	0dBi	>7dBi		

< 3U Antenna Specifications > AAC Clyde Space. Pulsar STX Technical Specifications

Gomspace.. (2019). Nanocom AX100 Datasheet

ISIS. (2014). Antenna system user manual

https://www.radartutorial.eu/07.waves/Waves%20and%20Frequency%20Ranges.en.htm Sining Liu et al. (2022). A Survey on CubeSat Missions and Their Antenna Designs. Electronics AAC Clyde Space. Pulsar SANT Technical Specificationx

Initial Design of 3U Cubesat

- Distance between -Z panel, UHF antenna : 65mm
- Pointing direction for communication : -Z
- Radiation interference measurement
 - Far field chamber \geq
 - **Mock-up structure**
 - ✓ 3U structure, camera
 - ✓ Solar panel, reflector, S-band antenna panel

< Radiation Pattern Measurement >

Astrodynamics and Control Lab.

< Initial Design of 3U Cubesat. Stowed(left), Deployed(Right)>

Soyoung Won. (2023). 3U CubeSat Critical Design for Next Generation Satellite Laser Ranging Verification Soyoung Won. (2022). 3U CubeSat Preliminary Design for SLR and Dazzling Verification

***** UHF Radiation Simulations

- ♦ Using Ansys HFSS
- ♦ Simplifications
 - Structures inside 3U cubesats
 - S-band antenna panel
 - Reflector folding parts
 - Solar panel circuits
- UHF turnstile antenna matched

< UHF Antenna for HFSS Simulations>

S-band antenna panel

< 3U Structure for HFSS Simulations >

< S11 Parameter of UHF Antenna>

Radiation Interference

- ◆ RHCP Gain peak drop : -4.11 dBi
 - Provided : 0 dBi
 - ➢ Measured : -4.11 dBi
 - ➢ Simulated : -2.96 dBi
- Axial ratio : 2.86
 - Original : 1 for RHCP
 - ➢ Simulated : 2.86
- Radiation pattern
- > The peak is not pointing to +Z

< Provided radiation pattern >

< Simulated radiation pattern >

Effect of Radiation Interference

Link Analysis (UHF Downlink)

♦ Requirements

- Minimum elevation : 10°(for obtaining data margin)
- Altitude : 600km(for operation)
- ▶ Required BER < 10^{-5} , Required Datarate ≥ 4800bps
- Pointing Error : worst case for emergency mode

Bad Link Margin : 3.253dB

Requirement is not satisfied due to radiation interference

< TX Power Measurement >

< RF Cable Loss Measurement >

< Link Analysis for Initial Design >

* Radiation Difference caused by Deployable Structures

- ♦ At the displacement of 65mm
- Case A : Interference by solar panel
 - $\succ Measured \Delta G$
 - ✓ -1.34dB (without reflector)
 - ✓ +2.62dB(with reflector)
 - > Simulated ΔG
 - ✓ -3.46dB(without reflector)
 - ✓ -6.17dB(with reflector)

Deployable Structure	ΔG(dB)
	2.62
Solar Panel	-1.34

< Measured Gain Difference with/without deployable structures >

G_s : Simulated without solar panel *G_{original}* : Simulated in original structure

AOD

Minimizing Radiation Interference

* Radiation Difference caused by Deployable Structures

- \blacklozenge At the displacement of 65mm
- Case B : Interference by reflector
 - $\blacktriangleright \text{ Measured } \Delta G : -2.4 \text{dB}$
 - > Simulated ΔG : -10.48dB
 - Effect by S-ant panel is increased(~300mm)
 - Aluminuim coating & spring connector made significant change(~65mm)

Deployable Structure	$\Delta G(dB)$
Reflector	-2.4
Reflector + Spring	-5.9

< Measured Gain Difference with/without deployable structures >

Antenna Displacement	Gain with Aluminium coating	Gain without Aluminium coating	ΔG	
6.5	-5.9846	-3.3046	-2.68	
25	3.5354	2.7854	0.75	

< Gain Difference with/without reflector aluminium coatings>

Astrodynamics and Control Lab.

 G_r : Simulated without reflector $G_{original}$: Simulated in original structure

AOD

Minimizing Radiation Interference

***** Radiation Difference caused by Deployable Structures

- ♦ At the displacement of 65mm
- Case C : Interference by S-Ant Panel
 - $\succ \Delta G$ at 65mm
 - ✓ Measured : -0.50dB
 - ✓ Simulated : -0.44dB

Deployable Structure	$\Delta G(dB)$
S-band Antenna Panel	-0.5

< Measured Gain Difference with/without deployable structures >

 G_a : Simulated without S-ant panel $G_{original}$: Simulated in original structure

* Radiation Difference caused by Antenna Displacement

◆ Similar Trends Between Simulation and Measurement

🔶 Gain peak drop

- observed at the initial position (displacement of 65 mm)
- ♦ Axial Ratio
 - ➢ 2.86 in initial position
 - Under 2 in displacement of 200-270 mm

along Z Distance from Upper Pannel>

along Z Distance from Upper Pannel >

* Radiation Difference caused by Antenna Displacement

- ♦ Similar Trends Between Simulation and Measurement
- Gain reduction near 300 mm due to the SANT panel S_{11} Parameter
 - Moved to higher frequency
 - Impedance changed due to deployable structure

Design Modifications(Antenna displacement)

- ◆ Minimized radiation interference by deployable structures
- Gain, Directivity Improvement
 - > Gain peak improvement : -4.1dB $\rightarrow 3.4$ dB
 - ▶ Improved link margin : 3.253dB → 9.10dB
 - > Improved Axial Ratio : $2.86 \rightarrow 1.93$

Conclusions

Conclusions

- Detected Radiation Interference
 - ✓ Gain Peak drop : -4.11dB, Axial Ratio : 2.86dB
 - ✓ Significant change in gain by using reflector, solar panel
 - ✓ Bad link margin : **3.51dB < 6dB(Required)**
- Radiation improvement by changing antenna allocations
 - ▶ Modified Antenna Displacement : upper distance $65mm \rightarrow 270mm$
 - ✓ Gain peak improvement : -4.1dB → 3.4dB
 - ✓ Improved Axial Ratio : $2.86 \rightarrow 1.93$
 - ✓ Improved link margin : 3.51dB → 9.10dB
 - ✓ Requirements satisfied
- Contributions
 - Proposed a method to minimize radiation interference caused by deployable structures through optimal component placement.
 - > Demonstrated that such interference can be leveraged to enhance antenna gain and directivity.

Conclusions

References

- https://www.yna.co.kr/view/AKR20220826061300017
- Erik Kulu. (2024). CubeSats & Nanosatellites 2024 Statistics, Forecast and Reliability. International Astronautical Congress
- https://www.yna.co.kr/view/AKR20220826061300017
- Soyoung Won. (2022). 3U CubeSat Preliminary Design for SLR and Dazzling Verification
- https://www.radartutorial.eu/07.waves/Waves%20and%20Frequency%20Ranges.en.html
- Sining Liu et al. (2022). A Survey on CubeSat Missions and Their Antenna Designs. Electronics
- AAC Clyde Space. Pulsar SANT Technical Specificationx
- ♦ AAC Clyde Space. Pulsar STX Technical Specifications
- Gomspace.. (2019). Nanocom AX100 Datasheet
- ISIS. (2014). Antenna system user manual
- https://space.skyrocket.de/doc_sdat/mast.htm
- https://satsearch.co/products/nakashimada-dom-de-orbit-mechanism
- https://www.nanosats.eu/sat/darkness
- https://www.cubesatshop.com/product/isis-deployable-antenna-system-for-1u-3u-cubesats/
- Jonathan Sauder, Christine Gebara & Manan Arya. (2021). A Survey of CubeSat Deployable Structures: The First Decade.
- C. Cappellin et al. (2020). Antennas on CubeSat Platforms: Accurate RF Predictions
- https://kids.britannica.com/students/assembly/view/53869
- Da-Eun Kang et al. (2022). Launch Preparation and Early-Orbit Operation of CubeSat MIMAN
- Soyoung Won. (2023). 3U CubeSat Critical Design for Next Generation Satellite Laser Ranging Verification
- Thomas M. Cover & Joy A. Thomas. (2005). Elements of Information Theory
- International Telecommunication Union. (2001). P.372-17: Radio noise. ITU.
- Constantine A. Balanis. (2005). Antenna Theory
- Wiley J. Larson& James R. Werts. (1999). Space Mission Analysis and Design
- Seungmin An. (2024). 3U CNDH_Data Budget_V2R0

Thank you Questions

Dukmin Jang Department of Satellite Systems, Yonsei University zzttit@yonsei.ac.kr

***** UHF data budget

UHF Downlink	Data Size (KB/day)
GPS Simple	1.86
Housekeeping	33.75
Total Data Size	35.61
Available Size	200.00
Data Margin	82.20 %

< 3U UHF Downlink Data Budget >

UHF Uplink	용량/일 (KB/day)
Telecommand	1.00
Total Data Size	1.00
Available Size	200.00
Data Margin	99.5%

< 3U UHF Uplink Data Budget >

S-band downlink data budget

S-band	Data Size (KB/day)
Housekeeping	33.75
GPS Raw	73.24
AOD	3375.00
Log	10.00
Image Thumbnail	900.19
Image	3840.82
Total Data Size	8231.99
Available Size	8935.55
Data Margin	7.87 %

< 3U S-band Downlink Data Budget>

***** TTNC System Requirements

Rationale	ID	Title	Condition		
BUS-024	COMS-001	UHF Link Margin	\geq 6 dB (El. \geq 20 deg)		
BUS-025	COMS-002	S-band Link Margin	\geq 6 dB (El. \geq 20 deg)		
BUS-017	COMS-003	UHF Frequency	430 - 438 MHz		
BUS-017	COMS-004	S-band Frequency	2400 - 2450 MHz		
BUS-024	COMS-005	UHF Datarate	\geq 2400 bps		
BUS-025	COMS-006	S-band Datarate	≥1 Mbps		
BUS-002	COMS-007	Thermal condition	(Opr.)-15 - +50 °C /(Str.)-50 - +100 °C		
BUS-017	COMS-008	Frequency	Enable		
DUS-017	COM5-008	Availability			
BUS-017	COMS-009	Operation	Enable		
BUS-001	COMS-010	Hardware Lifetime	\geq 6 Mon.		
BUS-018	COMS-011	UHF Protocol	CSP		
BUS-018	COMS-012	S-band Protocol	CCSDS		
BUS-005	COMS-013	Demension	Workable		
BUS-009	COMS-014	Power	Workable		

< 3U TTNC System reqruiements(Level 4) >

***** 3U Link Budget V7.1 (UHF Downlink , Initial Design)

			UH	F Do	wnlii	ηK			
			·				-		
INF	PUT		SIG	NAL				NOISE	NOISE
Parameter	Value	Unit	Parameter	Value	Unit			Parameter	Parameter Value
Trans	mitter		Sou	urce				Antenna Noise Tem	Antenna Noise Temperature
Transmit Power	0.7834	W	Transmit Power	-1.06016	dBW			Sky	<u>Sky</u> 30
Antenna Gain	-4.41	dBi	Gain	-4.41	dBi			Galactic	Galactic 38.94343
Pointing Error	25	deg	Line Loss	-0.89	dB			Man-made	Man-made 675.5253
HPBW	87	deg	Mismatch Loss	-0.03774	dB			Ground	Ground 200
VSWR	1.2051		Tx Pointing Loss	-0.99088	dB			Rain	Rain 2.010184
Line Loss	-0.89	dB	EIRP	-7.38878	dBW			Total	Total 946.4789
Rece	eiver		Pa	ath				Receiver Noise Tem	Receiver Noise Temperature
<u>Antenna Gain</u>	18.3	dBi	Path Loss	-150.966	dB			Coax Cable	Coax Cable 225.701
Pointing Error	10	deg	Polarization Loss	-0.04	dB			Amplifier	Amplifier 200
HPBW	21	deg	Absorption Loss	-0.04	dB			Receiver	Receiver 2400
VSWR	1.5		Scin. Fade Margin	-2	dB			Total	Total 1008.144
Line Loss	-2.5	dB	Rain Loss	-0.03	dB				
Or	bit		Total Loss	-153.076	dB	I I			
Altitude	600	km	Desti	nation					
Elevation	10	deg	Rx Pointing Loss	-2.72109	dB			Parameter	Parameter Value
Max. Distance	1931.6354	km	Gain	18.3	dBi			Effective Noise	Effective Noise
Da	ata		Line Loss	-2.5	dB			Temperature	Temperature 1954.623
Frequency	436.5	MHz	Mismatch Loss	-0.17729	dB			Spectral Noise	Spectral Noise
Wavelength	0.6868098	m	Total Signal Power	-147.563	dBW			Density	Density -195.689
Data Rate	4800	bps				·		Eb/N0	Eb/N0 11.313
Required Eb/N0	7.8	dB	Total Signal Power	-117.563	dBm			Required Eb/N0	Required Eb/N0 7.8
Cons	tants					'		Link Margin	Link Margin 3.513
Earth Radius	6371	km							
Speed of Light	299792458	m/s							
Boltzmann Constant	1.381E-23	J/K							
Reference Temp.	290	К							

Astrody

***** 3U Link Budget V7.1 (UHF Uplink , Initial Design)

INPUT						
Parameter	Unit					
Transn	nitter					
Transmit Power	100	W				
Antenna Gain	18.3	dBi				
Pointing Error	10	deg				
HPBW	21	deg				
VSWR	1.5					
Line Loss	-0.38	dB				
Recei	iver					
<u>Antenna Gain</u>	-4.41	dBi				
Pointing Error	25	deg				
HPBW	82	deg				
VSWR	1.2051					
Line Loss	-0.89	dB				
Orbit						
<u>Altitude</u>	600	km				
Elevation	20	deg				
Max. Distance	1392.164	km				
Dat	ta					
Frequency	436.5	MHz				
Wavelength	0.6868098	m				
Data Rate	4800	bps				
Required Eb/N0	7.8	dB				
Constants						
Earth Radius	6371	km				
Speed of Light	299792458	m/s				
Boltzmann Constant	1.381E-23	J/K				
Reference Temp.	290	К				

SIGNAL			
Parameter	Value	Unit	
Sou	ırce		
Transmit Power	20	dBW	
Gain	18.3	dBi	
Line Loss	-0.38	dB	
Mismatch Loss	-0.17729	dB	
Tx Pointing Loss	-2.72109	dB	
EIRP	35.02162	dBW	
Pa	ath		
Path Loss	-148.121	dB	
Polarization Loss	-3	dB	
Absorption Loss	-0.04	dB	
Scin. Fade Margin	-2	dB	
Rain Loss	-0.03	dB	
Total Loss	-153.191	dB	
Destination			
Rx Pointing Loss	-1.11541	dB	
Gain	-4.41	dBi	
Line Loss	-0.89	dB	
Mismatch Loss	-0.03774	dB	
Total Signal Power	-124.623	dBW	

Total Signal Power	-94.6228	dBm
--------------------	----------	-----

NOISE		
Parameter	Value	Unit
Antenna Noise Temper	rature	
Sky	0	К
Galactic	0	К
Man-made	0	К
Ground	300	К
Rain	2.010184	К
Total	302.0102	К
Receiver Noise Temper	rature	
Coax Cable	0	К
Amplifier	0	К
Receiver	0	К
Total	0	К

LINK MARGIN		
Parameter	Value	Unit
Effective Noise Temperature	302.0102	к
Spectral Noise Density	-203.799	dBW/Hz
Eb/N0	42.36375	dB
Required Eb/N0	7.8	dB
Link Margin	34.5637	dB

Astro

*** 3U Link Budget V7.1 (S Downlink, Initial Design)**

INPUT		
Parameter	Value	Unit
Tran	smitter	
Transmit Power	0.86896	W
Antenna Gain	8.99	dBi
Pointing Error	10	deg
HPBW	52	deg
VSWR	1.35641	
Line Loss	-1.6	dB
Re	ceiver	
Antenna Gain	37	dBi
Pointing Error	1	deg
HPBW	2	deg
<u>VSWR</u>	1.5	
Line Loss	-2.5	dB
C	Drbit	
<u>Altitude</u>	600	km
Elevation	15	deg
Max. Distance	1625.844831	km
Γ	Data	
Frequency	2403.5	MHz
Wavelength	0.124731624	m
Data Rate	1000000	bps
Required Eb/N0	5	dB
Constants		
Earth Radius	6371	km
Speed of Light	299792458	m/s
Boltzmann Constant	1.38065E-23	J/K
Reference Temp.	290	K

S-band	Down	lin	k

SIGNAL		
Parameter	Value	Unit
Sou	irce	
Transmit Power	-0.61	dBW
Gain	8.99	dBi
Line Loss	-1.6	dB
Mismatch Loss	-0.10051	dB
Tx Pointing Loss	-0.44379	dB
EIRP	6.235703	dBW
Pa	ıth	
Path Loss	-164.286	dB
Polarization Loss	0	dB
Absorption Loss	-0.1	dB
Scin. Fade Margin	-0.5	dB
Rain Loss	-0.3	dB
Total Loss	-165.186	dB
Desti	nation	
Rx Pointing Loss	-3	dB
Gain	37	dBi
Line Loss	-2.5	dB
Mismatch Loss	-0.17729	dB
Total Signal Power	-127.628	dBW
Total Signal Power	-97.6278	dBm

NOISE		
Parameter	Value	Unit
Antenna Noise Tempera	ture	
<u>Sky</u>	30	К
Galactic	0.769939	К
Man-made	5.990454	К
Ground	200	К
Rain	20.7406	К
Total	257.501	К
Receiver Noise Temperature		
Coax Cable	225.701	К
Amplifier	200	К
Receiver	2400	К
Total	666.7143	К

LINK MARGIN			
Parameter	Value	Unit	
Effective Noise Temperature	924.2153	К	
Spectral Noise Density	-198.941	dBW/Hz	
Eb/N0	11.31361	dB	
Required Eb/N0	5	dB	
Link Margin	6.31361	dB	

Astr

UHF Downlink

3U Link Budget V8.1 (UHF Downlink, Modified Design)

INPUT		
Parameter	Value	Unit
Transn	nitter	
Transmit Power	0.7834	W
<u>Antenna Gain</u>	1.56	dBi
Pointing Error	25	deg
HPBW	73	deg
VSWR	1.2051	
Line Loss	-0.89	dB
Recei	iver	
Antenna Gain	18.3	dBi
Pointing Error	10	deg
<u>HPBW</u>	21	deg
<u>VSWR</u>	1.5	
Line Loss	-2.5	dB
Orbit		
<u>Altitude</u>	600	km
Elevation	10	deg
Max. Distance	1931.6354	km
Dat	ta	
Frequency	436.5	MHz
Wavelength	0.6868098	m
Data Rate	4800	bps
Required Eb/N0	7.8	dB
Constants		
Earth Radius	6371	km
Speed of Light	299792458	m/s
Boltzmann Constant	1.381E-23	J/K
Reference Temp.	290	К

SIGNAL			
Parameter	Value	Unit	
Sol	irce		
Transmit Power	-1.06016	dBW	
Gain	1.56	dBi	
Line Loss	-0.89	dB	
Mismatch Loss	-0.03774	dB	
Tx Pointing Loss	-1.40739	dB	
EIRP	-1.83529	dBW	
Pa	ith		
Path Loss	-150.966	dB	
Polarization Loss	-0.01	dB	
Absorption Loss	-0.04	dB	
Scin. Fade Margin	-2	dB	
Rain Loss	-0.03	dB	
Total Loss	-153.046	dB	
Desti	Destination		
Rx Pointing Loss	-2.72109	dB	
Gain	18.3	dBi	
Line Loss	-2.5	dB	
Mismatch Loss	-0.17729	dB	
Total Signal Power	-141.98	dBW	
Total Signal Power	-111.98	dBm	

NOISE		
Parameter	Value	Unit
Antenna Noise Temper	ature	
<u>Sky</u>	30	K
Galactic	38.94343	К
Man-made	675.5253	К
Ground	200	К
Rain	2.010184	К
Total	946.4789	К
Receiver Noise Temper	ature	
Coax Cable	225.701	K
Amplifier	200	К
Receiver	2400	K
Total	1008.144	K

LINK MARGIN		
Parameter	Value	Unit
Effective Noise Temperature	1954.623	К
Spectral Noise Density	-195.689	dBW/Hz
Eb/N0	16.89649	dB
Required Eb/N0	7.8	dB
Link Margin	9.09649	dB

Astrod

3U Link Budget V8.1 (UHF Uplink , Modified Design)

INP	UT	
Parameter	Value	Unit
Transr	nitter	
Transmit Power	100	W
Antenna Gain	18.3	dBi
Pointing Error	10	deg
HPBW	21	deg
VSWR	1.5	
Line Loss	-0.38	dB
Rece	iver	
Antenna Gain	1.56	dBi
Pointing Error	25	deg
HPBW	82	deg
VSWR	1.2051	
Line Loss	-0.89	dB
Ort	oit	
Altitude	600	km
Elevation	10	deg
Max. Distance	1931.6354	km
Da	ta	
Frequency	436.5	MHz
Wavelength	0.6868098	m
Data Rate	4800	bps
Required Eb/N0	7.8	dB
Const	ants	
Earth Radius	6371	km
Speed of Light	299792458	m/s
Boltzmann Constant	1.381E-23	J/K
Reference Temp.	290	К

UHF Uplink

SIGNAL		
Parameter	Value	Unit
Soι	irce	
Transmit Power	20	dBW
Gain	18.3	dBi
Line Loss	-0.38	dB
Mismatch Loss	-0.17729	dB
Tx Pointing Loss	-2.72109	dB
EIRP	35.02162	dBW
Path		
Path Loss	-150.966	dB
Polarization Loss	0	dB
Absorption Loss	-0.04	dB
Scin. Fade Margin	-2	dB
Rain Loss	-0.03	dB
Total Loss	-153.036	dB
Desti	nation	
Rx Pointing Loss	-1.11541	dB
Gain	1.56	dBi
Line Loss	-0.89	dB
Mismatch Loss	-0.03774	dB
Total Signal Power	-118.497	dBW

Total Signal Power -88.4975 dBm

NOISE		
Parameter	Value	Unit
Antenna Noise Temper	ature	
Sky	0	К
Galactic	0	K
Man-made	0	K
Ground	300	K
Rain	2.010184	К
Total	302.0102	K
Receiver Noise Temper	ature	
Coax Cable	0	К
Amplifier	0	К
Receiver	0	К
Total	0	К

LINK MARGIN		
Parameter	Value	Unit
Effective Noise Temperature	302.0102	К
Spectral Noise Density	-203.799	dBW/Hz
Eb/N0	48.48905	dB
Required Eb/N0	7.8	dB
Link Margin	40.6891	dB

Astrod

	Carlos T	*
(e		17

***** 3U Link Budget V8.1 (S Downlink, Modified Design)

INPUT		
Parameter	Value	Unit
Tran	smitter	
Transmit Power	0.86896	W
Antenna Gain	9.1889	dBi
Pointing Error	10	deg
HPBW	52	deg
VSWR	1.35641	
Line Loss	-1.6	dB
Re	ceiver	
<u>Antenna Gain</u>	37	dBi
Pointing Error	1	deg
<u>HPBW</u>	2	deg
<u>VSWR</u>	1.5	
Line Loss	-2.5	dB
C)rbit	
Altitude	600	km
Elevation	15	deg
Max. Distance	1625.844831	km
Γ	Data	
Frequency	2403.5	MHz
Wavelength	0.124731624	m
Data Rate	1000000	bps
Required Eb/N0	5	dB
Cor	istants	
Earth Radius	6371	km
Speed of Light	299792458	m/s
Boltzmann Constant	1.38065E-23	J/K
Reference Temp.	290	К

S-band	Down	link

SIGNAL		
Parameter	Value	Unit
Sou	urce	
Transmit Power	-0.61	dBW
Gain	9.1889	dBi
Line Loss	-1.6	dB
Mismatch Loss	-0.10051	dB
Tx Pointing Loss	-0.44379	dB
EIRP	6.434603	dBW
Pa	ath	
Path Loss	-164.286	dB
Polarization Loss	0	dB
Absorption Loss	-0.1	dB
Scin. Fade Margin	-0.5	dB
Rain Loss	-0.3	dB
Total Loss	-165.186	dB
Desti	nation	
Rx Pointing Loss	-3	dB
Gain	37	dBi
Line Loss	-2.5	dB
Mismatch Loss	-0.17729	dB
Total Signal Power	-127.429	dBW

Total Signal Power	-97.4289	dBm
--------------------	----------	-----

NOISE		
Parameter	Value	Unit
Antenna Noise Tempera	ature	
Sky	30	К
Galactic	0.769939	К
Man-made	5.990454	К
Ground	200	К
Rain	20.7406	K
Total	257.501	K
Receiver Noise Tempera	ature	
Coax Cable	225.701	К
Amplifier	200	К
Receiver	2400	К
Total	666.7143	К

LINK MARGIN									
Parameter	Value	Unit							
Effective Noise Temperature	924.2153	К							
Spectral Noise Density	-198.941	dBW/Hz							
Eb/N0	11.51251	dB							
Required Eb/N0	5	dB							
Link Margin	6.51251	dB							

27

*** 3U Message ID Lists**

Subsyste	Name	Value (Hex)	Subsystem	Name	Value (Hex)	Subsystem	Name	Value (Hex)	
m Base	UL OFFETT CMD			GRX_CMD_MID	0x1887		CI INPUT MID	0x18A9	
	SU_OFFSET_CMD_	0x1870	0x1870	GRX	GRX SEND GPS RAW MI	0X1889	CI		019 4 4
	FM FPS CHECK S		1		0x188A	CI		UX18AA	
EM_EPS	EM_EPS OC MID 0x	0x1871		STX CMD MID	0x188B		CI_OIF_MID	0x18AB	
FTP	FTP REPLY MID	0x1872	STX	STX_OIF_MID	0x188D	ТО	TO CMD MID	0x18AC	
IFC	IFC_CMD_MID	0x1873		STX_SEND_HK_MID	0x188E			019 A D	
	IFC OIF MID	0x1875		STX_SEND_BCN_MID	0x188F			0X18AD	
FM	FM CMD MID	0x1876	UANT	UANT_CMD_MID	0x1890		TO_WAKEUP_MID	0x18AE	
	FM_OIF_MID	0x1878		UANT_OIF_MID	0x1892		TO CMD EXEC REPORT MID	0x18AF	
	FM_SEND_HK_MID	0x1879		UANT_SEND_HK_MID	0x1893				
	FM_SEND_BCN_MI	0x197A	UTRX	UANT_SEND_BCN_MID	0x1894	SN	SN_CMD_MID	0x18B0	
	D	0X10/A		UTRX_CMD_MID	0x1895		SN OIF MID	0x18B1	
	FM_SEND_AOD_MI	0x187B		UTRX_OIF_MID	0x1897	НК		019D2	
	D	OATO/D		UTRY SEND PCN MID	0x1898			0X18B2	
EPS	EPS_CMD_MID	0x187C	PAYC PAYR	DIRA_SEND_BCN_MID	0x1899		HK_SEND_HK_MID	0x18B3	
	EPS_OIF_MID	0x187E		PAYC OF MID	0x189A 0x189C		HK_SEND_COMBINED_PKT_MI	019D4	
	EPS_SEND_HK_MI	0x187F		PAYC SEND HK MID	0x189D		D	0X16D4	
	D FPS SEND BCN MI			PAYC_SEND_BCN_MID	0x189E	SCH	SCH_CMD_MID	0x18B5	
	D	0x1880		PAYR_CMD_MID	0x189F		SCH SEND HK MID	0x18B6	
ADCS	ADCS CMD MID	0x1881		PAYR_OIF_MID	0x18A1	DS		0.102.5	
	ADCS OIF MID	0x1883		PAYR_SEND_HK_MID	0x18A2		DS_CMD_MID	0x18B7	
	ADCS_SEND_HK_M	0-1994		PAYR_SEND_BCN_MID	0x18A3		DS_SEND_HK_MID	0x18B8	
	ID	0X1884	PAYS	PAYS_CMD_MID	0x18A4	LOG	LOG CMD MID	0v18B0	
	ADCS_SEND_BCN_	0v1885		PAYS_OFF_MID	0x18A6			0X10D9	
	MID	0X1005		PAYS SEND HK MID	0x18A/		LOG_SEND_HK_MID	0x18BA	
				PAYS_SEND_BCN_MID	0X18A8		•		
	ADCS SEND AOD								
	MID	0x1886							
	trodynamice	and Co	ntrol L.s	ah.					
	u ouy nannes								