

Characterization of Reaction Wheels for High Performance Imaging Missions

Marisa du Plessis – AIT Engineer 2024/04/24

CUBESPACE SATELLITE SYSTEMS INTRODUCTION

- Design and manufacture ADCS for Small Satellites
- Started as a university spin out in 2014
- Controlling over 350 satellites to date
- Supplied over 3000+ ADCS parts to date
- Started with CubeSats, now scaling into MicroSats
- Expanding to EU and US in 2024

SATELLITE POINTING STABILITY RELATION TO REACTION WHEELS

- High ground resolution specifications stable platform
- Influenced by micro-vibrations emanating from subsystems
- Most prominent source: Reaction Wheels

IMAGE SMEAR

IMAGE BLUR

RESOLUTION DEGRAGATION

RESEARCH OBJECTIVES

OVERVIEW

Comprehensive Literature Develop a Reaction Wheel Classify origins of micro-Review vibrations. Model Investigate effect Experimental Analyze Micro-vibration of micro-vibrations Measured Data Measurements Mitigation on a satellite system

MICRO-VIBRATION SOURCES

- Periodic micro-disturbances presenting as (F_X, F_Y, F_Z) and (M_X, M_Y, M_Z)
- Low amplitude mechanical vibrations
- From 1 Hz up to 1 kHz
- Signals with distinct characteristics
 - Structural Cage Modes
 - Engine Orders
- Signal clearly visualized and identified in waterfall plots

<u>_</u>

CUBESPACE

MICRO-VIBRATION SOURCES STRUCTURAL CAGE MODES

- Natural Frequencies or Eigenmodes
- Specific modes of vibration exhibited by the structure of mechanical system
- Three modes to investigate,
- 5 degrees of freedom in the system:

CUBESPACE

 \int_{Γ}

MICRO-VIBRATION SOURCES

FLYWHEEL UNBALANCE

- Often most significant source of micro-vibration emitted by a reaction wheel
- Caused by residual uneven distribution of mass around the rotor's axis of rotation

Static Unbalance	Dynamic Unbalance	Rotor Shaft
Uneven distribution of mass in the plane of rotation	Uneven distribution of mass in the planes parallel to the rotational plane of the flywheel	
$F_s = m_s r_s \Omega^2 = U_s \Omega^2$	$M_d = m_d r_d d_d \Omega^2 = U_d \Omega^2$	Rotor _

36

MICRO-VIBRATION SOURCES

BALL BEARING IMPERFECTIONS

Race Ball Pass Frequency

Fundamental Cage Frequency

Ball Spin Frequency

Corresponds to number of rolling elements passing a set point of the **inner/outer race** each time the shaft makes a complete turn

Corresponds to number of turns the bearing cage make each time the shaft makes a complete turn Corresponds to the Number of turns that rolling element makes each time the shaft makes a complete turn (rolling element failing frequency)

$$\frac{\operatorname{fr}\left(\frac{\operatorname{dd}\operatorname{cos}(\alpha)}{D}-1\right)}{2}$$
$$\frac{\operatorname{fr}\left(\frac{\operatorname{dd}\operatorname{cos}(\alpha)}{D}+1\right)}{2}$$

$$\frac{D}{2} \operatorname{fr} \left(\frac{\mathrm{dd}^2}{\mathrm{D}^2 \cos(\alpha)^2} - 1 \right)}{2 \, \mathrm{dd}}$$

CUBESPACE

MICRO-VIBRATION SOURCES TORQUE RIPPLE

- Variation in torque output of a motor as it rotates through a complete revolution
- Primarily caused by interaction between magnetic fields of rotor and stator

Cogging Torque	Commutation Torque	Zero Crossing Stiction	Harmonic Torque Ripple
Interaction: permanent magnets on the rotor and the teeth on the stator	High frequency stator phase switching. Inversely proportional to the speed.	Static Friction	Variations in torque due to presence of higher order electromagnetic harmonics in the motor
$f_{cogging} = N_{poles} \Omega$			

CUBESPACE

THEORETICAL MODEL EQUATIONS OF MOTION: BALANCED FLYWHEEL

- Reference Frame: Euler Rotation Y X Z
- Derive using Lagrange Equation
- Determine Kinetic Energy (*T*) and Potential Energy (*V*)
- Lagrangian: L = T V
- External forces generated by the viscous dampers: δW
- For each degree of freedom of the system, an EOM is derived

from the Euler-Lagrange equation: $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}}\right) - \frac{\partial L}{\partial x} = \frac{\partial(\delta W)}{\partial(\delta x)}$

THEORETICAL MODEL EQUATIONS OF MOTION: BALANCED FLYWHEEL

The set of 5 equations of motions presenting the balanced rotor-bearing system is linearized and rearranged into matrix form to become:

 $[\boldsymbol{M}_{\boldsymbol{b}}] \cdot \boldsymbol{a} + [\boldsymbol{C}_{\boldsymbol{b}}(\Omega, t)] \cdot \boldsymbol{v} + [\boldsymbol{K}] \cdot \boldsymbol{u} = [\boldsymbol{0}]$

Where:

$$a = \begin{array}{cccc} \ddot{x} & \dot{x} & x \\ \ddot{y} & \dot{y} & \dot{y} \\ \ddot{a} & \dot{z}, & v = \dot{z}, & u = z \\ \ddot{\theta} & \dot{\theta} & \dot{\theta} \\ \ddot{\Phi} & \dot{\Phi} & \Phi \end{array}$$

THEORETICAL MODEL EQUATIONS OF MOTION: UNBALANCED FLYWHEEL

- Add unbalance masses m_s and m_d
- $M_t = M_b + m_s + 2m_d$
- Translational motions now includes total mass and excitation of the static unbalance, U_s .
- Rocking motions now considers additional inertia and the excitation of the dynamic unbalance, U_d .

$$\begin{pmatrix} x_{\mathrm{dd}} + \frac{\operatorname{cr} x_d}{\operatorname{Mt}} + \frac{\operatorname{kr} x}{\operatorname{Mt}} - \frac{\operatorname{cr} d_1 \phi_d (r-1)}{2 \operatorname{Mt}} - \frac{d_1 \operatorname{kr} \phi (r-1)}{2 \operatorname{Mt}} = -\frac{\Omega^2 \operatorname{Us} \sin(\Omega t)}{\operatorname{Mt}} \\ y_{\mathrm{dd}} + \frac{\operatorname{cr} y_d}{\operatorname{Mt}} + \frac{\operatorname{kr} y}{\operatorname{Mt}} - \frac{\operatorname{cr} d_1 \theta_d (r-1)}{2 \operatorname{Mt}} - \frac{d_1 \operatorname{kr} \phi (r-1)}{2 \operatorname{Mt}} = \frac{\Omega^2 \operatorname{Us} \cos(\Omega t)}{\operatorname{Mt}} \\ z_{\mathrm{dd}} + \frac{\operatorname{ca} z_d}{\operatorname{Mt}} + \frac{\operatorname{ka} z}{\operatorname{Mt}} = 0 \\ \theta_{\mathrm{dd}} - \frac{\theta_d \sigma_1}{\operatorname{Ir}} - \frac{\operatorname{Iz} \Omega \phi_d}{\operatorname{Ir}} - \frac{\operatorname{cr} d_1 y_d (r-1)}{2 \operatorname{Ir}} - \frac{d_1 \operatorname{kr} y (r-1)}{2 \operatorname{Ir}} + \frac{d_1^2 \operatorname{kr} \theta (r^2+1)}{2 \operatorname{Ir}} = \frac{\Omega^2 \operatorname{Ud} \cos(\Omega t)}{\operatorname{Ir}} \\ \phi_{\mathrm{dd}} - \frac{\phi_d \sigma_1}{\operatorname{Ir}} + \frac{\operatorname{Iz} \Omega \theta_d}{\operatorname{Ir}} - \frac{\operatorname{cr} d_1 x_d (r-1)}{2 \operatorname{Ir}} - \frac{d_1 \operatorname{kr} x (r-1)}{2 \operatorname{Ir}} + \frac{d_1^2 \operatorname{kr} \phi (r^2+1)}{2 \operatorname{Ir}} = \frac{\Omega^2 \operatorname{Ud} \sin(\Omega t)}{\operatorname{Ir}} \end{pmatrix}$$

where

$$\sigma_1 = \operatorname{Iz} \Omega \, \sin \left(2 \, \Omega \, t \right) - \frac{\operatorname{cr} d_1^2 \left(r^2 + 1 \right)}{2}$$

11

THEORETICAL MODEL EQUATIONS OF MOTION: UNBALANCED FLYWHEEL

The set of equations are considered the basic form of the theoretical micro-vibration model, and is presented in matrix form as:

$\boldsymbol{a} + [\boldsymbol{C}_{\boldsymbol{u}\boldsymbol{b}}(\Omega,\boldsymbol{t})] \cdot$	v +	$[K] \cdot u =$	$= [\boldsymbol{U}\boldsymbol{b}(\Omega, \boldsymbol{t})]$
Where: a =	x ÿ Ż, Θ	$egin{array}{ccc} \dot{x} & \dot{y} \ arphi & ec{z} , \ ec{ heta} & ec{ heta} \ ec{ heta} & ec{ heta} \ ec{ heta} & ec{ heta} \end{array}$	$u = \begin{bmatrix} x \\ y \\ \theta \\ \Phi \end{bmatrix}$

THEORETICAL MODEL

MODEL OUTPUT: CAMPBELL DIAGRAM

- 5
- Presentation of resonant frequencies as function of speed
- $c_r = c_a = 0$ and $U_s = U_d = 0$
- State matrix $A = \begin{bmatrix} -[C_{ub}(\Omega)] & -[K] \\ [I_5] & [0] \end{bmatrix}$
- Calculate eigenvalues of A to find resonant frequencies

THEORETICAL MODEL

MODEL OUTPUT: FFT RESPONSE AT SET SPEEDS

CUBESPACE

- Solve Simulink model set speeds
- Aacceleration $a = [\ddot{x} \quad \ddot{y} \quad \ddot{z} \quad \ddot{\theta} \quad \ddot{\Phi}]^T$ determined
- Acceleration multiplied by either mass of moment of inertia
- Obtain forces and torques as a function of time
- Transform into frequency domain and FFT
- Plots for each speed can be stacked to create waterfall plot comparable to experimental data

EXPERIMENTAL SETUP

DATA ACQUISITION SYSTEM

Components

Kistler piezoelectric force-torque sensor

Kistler Multichannel Laboratory Charge Amplifier

Kistler Laboratory Charge Amplifier

Pneumatic Isolation System

Processing Software

PRELIMINARY RESULTS

DATA REPRESENTATION

CONCLUSION SUMMARY AND FUTURE WORK

Characterizes Micro-vibration Sources in Reaction Wheels

Refine Theoretical Model through further experiments and analysis

Developed Basic Theoretical Micro-vibration Model

Investigate Propagation of Micro vibrations through Satellite

Design and Implementation of Experimental Setup

Successful Mitigation of Microvibrations

CUBESPACE GET IN TOUCH

INFO@CUBESPACE.CO.ZA

@cubespace_adcs

@cubespace_adcs

www.cubespace.co.za

© CubeSpace Satellite Systems (RF) (Pty) Ltd Commercial in Confidence