Integration
Commercial ADCS for Naval
Academy Standard Bus

MIDN 1/C Gwynn, Kaiser, McCarthy, Nordgauer, Thibault, Williams

USNA Aerospace Engineering Department

Provides:
e Power
e Comms
e OBC

To a variety of
payloads

Mission Statement

The mission of the Naval Academy Standard Bus Attitude
Determination and Control System (NASB-ADCS) is to:

* Integrate CubeSpace ADCS flight hardware and
software with the NASB

* Develop an in-house interface between the NASB and
the ADCS module

« Configure the ADCS module specifically for 3-Axis
attitude control of the NASB satellite in LEO

« Design for the accommodation of payloads

« Test as a single integrated NASB-ADCS unit

USNAADCS Team Structure

ﬁm

Algorithms &
Simulations

\ Dorian Williams /

Electrical & C&DH Flight Software Integration & Testing Structures

Max Thibault

Cormac McCarthy

Jackee Gwynn Bradyn Kaiser

Red Indicates Not
Present At
Conference

Concept of Operations

Brynley Nordgauer

Concept of Operations

Note: Phase 3 can go to Phase 5
directly, but Phase 4 is passed
through, since Phase 4 could be a
terminal mode for some missions.

Phase 2: Detumble Phase 3:

- Initial Angular Rate Magnetometer Deployment
Estimation - Boom Deployment Phase 4: Y-Momentum

- Magnetic Detumble - Calibration - Angular Rate/Pitch Estimation

£\

A
Phase 1: Cubesat - /’
s *
.

- Y-Wheel Ramp Up
- Establish Y-Momentum Control

Deployment & Power
On
Phase 5: 3-Axis Control

\! - Sun and Nadir Sensor
Activation
- Star Tracker Activation
- Establish 3-Axis Control

%

g

Launch

Algorithms & Simulations

Brynley Nordgauer

Sw

tching Logic Flowchart

Detumble &
Stablization

v

Satellite Deployment

o)

Telemetry

v

Magnetic Detumble
ON

600 Seconds

Magnetic Detumble
OFF

N 2 U

Telemetry

v

Command Y-
Thomson

N N T/

Single
Wheel
Activation

Y-Momentum }Telemetr

Telemetry

[Y-Wheel OFF

2 mmutes

Commence Y-Whee
Ramp-Up

Telemetry

Y-Thomson
Established

|
|
|

Three
Wheel
Activation

Remove Excess
Momentum

1 Orblt

Three AXIS Control

Command Angular
Rates

d
-
-

A 4

Custom Controller
ON

Testing & Customization

Simulation Capabilities

« Earth Models
 Magnetic - Dipole Model
* Orbit Propagator - Two Body
« CubeSat Models
* 4 Inertia Test Cases Developed
« Disturbance Torques
* Gravity Gradient
« Commissioning
* Simulated through conditional switching logic
« Magnetometer deployment assumed to have negligible effects

« RunTime
30,000 seconds (8 hours and 20 minutes)

Simulation Initial Conditions

« [|nitial Conditions
* w,=[10, 10, -10] deg/sec
* |nertia Test Cases

Case Inertia Tensor [g-m?] Dummy Mass
93.44 -0.09724 0.5380
A Ip=1-0.09724 95.39 -0.2500 No

0.5380 —-0.2500 13.11
[69.04 -0.1064 0.5522 |
B Ip=1-0.1064 69.15 -0.1982 Yes
| 0.5522 -0.1982 9.781 |
[71.91 -0.1055 0.5495 |
C Ic=1-0.1055 72.21 -0.2058 Yes
| 0.5495 -0.2058 10.14 |
[7891 -0.1020 0.3104]
D Ip =|-0.1020 79.67 -0.6101 Yes
| 0.3104 -0.6101 11.05 |

Table 3.2: Inertia Tensor Test Cases.

10

X Wheel
Y Wheel
Z Wheel

Three Axis Control

Wheel Spin-Up

|

15

Time [10° seq

Angular Velocity [deg/sec]

Body Rates vs. Time (Case D)
T T I

(_,___~———‘Begin Approach to Y-Thomson

Three Axis Control

)
Y~
U’;VD/—\{,MW\.O\ S

Y-Wheel Ramp-Up
End 600 second Detumble

ADCS CubeSpace Hardware

Bradyn Kaiser

12

Hardware Overview - Stack

CubeSense (x2)

\ s
;5 Sensor Structural
£ o 9 . Board

~

- . .. '\.
w R . \
: CubeStar

P CubeWheel (x3)
\ ® s

i

CubeConnect

N

ADCS Electrical

Interface Board
CubeControl 42

I
o/
CubeComputer -

CubeTorquer (x2)

CubeCoil

12

ADCS Processor Board

« CubeComputer
e Control unit of ADCS stack
* Houses estimator and control algorithms
e TLM logging

* Manages communication of ADCS modules

* Functions
* Integrated RTC and internal and external watchdog
4 MB Flash for code and in-flight reprogramming
* FPGA for EDAC and SEU protection
* Current monitoring for latchup protection and power cycle ability
 12C, CAN, and UART interfaces

14

ADCS Actuators

Small+ CubeWheel x3
 Performance
* Max momentum: 3.6 mNms
 Max wheel speed: +/- 6000 rpm
* Maxtorque: 2.3 mMNm
* Dynamic imbalance < 0.014 g-cm?

CubeRod x2 and CubeCoil x1
* Directly interfaced with CubeControl
e Performance

 Max magnetic moment: +/- 0.48 Am?

A Sensor Suite

” .
J ¢

CubeSense

~

CubeMag

CubeStar

16

ADCS Sensors

CubeSense

* Configurable to Nadir or Sun sensors during
manufacturing

 NASB ADCS has one of each configuration
* Performance

* Sensor Accuracy: <0.2°

* FOV: 180°

17

ADCS Sensors

Coarse Sun Sensors (CSS) x10

e Spread across different faces of satellite
* Accuracy:<10°

CubeMag

* External deployable magnetometer

* Provides entirety of magnetic field data
* Deployed/Undeployed

e Measurement noise < 50 nT (per axis)

18

ADCS Sensors

CubeStar

* Intended for usage in low-power, high performance
* Performance
* FOV:58°x47°
 Designed Sun Exclusion Angle - 35° off-boresight
* Hipparcos Star Catalogue - 410 Stars
* Max: 38\ Min: 2
* Sensitivity: < 3.8 Star Magnitude
e Sky cover: 99.71%

e Accuracy: 0.02° (across boresight, 30)

e Max acquisition rate: 0.3°/s

e Upto1lHzupdate rate
19

Structures

Bradyn Kaiser

20

Sensor <
Integration

ADCS

NASB

21

CAD Models: Sensor Configuration

CubeSense
(Earth Horizon)

CubeStar

CubeSense (Star Tracker)

(Earth Horizon)

5,
’’’’’
e

Deployable N
Magnetometer

22

Electrical Interface

Cormac McCarthy

23

MOLEX to MOLEX N\ ASB-PIB 10-pin Hamess

ADCS jo—1 7.4v Battery Voltage
Interconnect o— 2 3.3v
Board I
jo— 3 5v
7.4v 1 | 6 7.4v Switched Battery Voltage
3.3v 2 : 5 3.3v Switched Power
5v 3 I 6 5v Switched Power
UART Rx 4 I 7 UART Tx
UART Tx 5 i 8 UART Rx
GND 6 } 9 GND
o—— 10 Unused

24

Board

.
e

-
-

N
2
o0
q—
O
O
O

PCB Design: KiCad

- Used the open source
software KiCad to design the
PCB

- Also used to format the
fabrication files

o0
o0
oo
o0
o0
o0
oo
o0
[+ K]
o0
oo
o0
o0
o0
o0
o0

O0O0OO0OOCOOOOOOOOOOO
Q00000 0QO0O0O0OO0OO0O0O0OD

- Took time to become

2

2 1
- "—f*"*“-“"f%éﬁ&‘ | 2:26_0dd_Even
2

it e e R R

H

(0 ¥4 (%9 (M

i

ke el FiRp R s R R R kb

Rlekklkislple kil hiskbe kbRl

L pie o 38 30 g nigty 119

26

lterations

27

Prototyping: Voltera

- V-One PCB Printer

- Learning curve to rapidly
produce high quality
prototypes

- Special temperature
considerations for soldering
to conductive ink

- Once perfected, a prototype
could be produced in ~3 hrs

Voltera prototype

28

Prototyping: Etching

- Another prototyping
method used involved
chemically etching a

copper plated sheet of
FRA4.

- This was outsourced to
another academic
department and as a result
took much longer

_ Th|S methOd aISO produced Etched prototype with voltage regulati caabilities
lower resolution prints

29

Final Board

- The final board was professionally printed by Precision PCBs using
DigiKey’s PCB Designer tool.

- A 10 circuit MOLEX header and wiring harness was constructed to
interface the board with the NASB Payload Interface Board.

- o X = Rttty
3 © ‘@
(3 (»
Of OIf
| > ®

Final board integrated with CubeWheels 30

Flight Software:
Telecommands and Telemetry

Jackee Gwynn

31

Integration Basics

NASB

Payload Interface Board
In-House

CubeComputer

Commmercial

32

Communications

Cube-
NASB PIB Computer
In-house CubeComp

Software Software

33

Communications

NASB PIB

In-house
Software

Telemetry Request

Ox7F TLM ID
Start-of-message identifier End-of-message identifier

Telemetry Reply
S 7.V 1D TLM byte 0 | ..

Start-of-message End-of-message
identifier identifier

Telecommand
(AN TC cata byte 0| .
Start-of-message End-of-message
identifier identifier

Telecommand Acknowledgement

RSNl 7C Error flag
Start-of-message 0 = no error End-of-message
identifier 1 = invalid TCID identifier

2 = incorrect length
3 = invalid parameters
4 = CRC error

Cube-
Computer

CubeComp
Software

34

Software Implementation

Library: cubelib.mpy

Commissioning Manual ->
function

Telemetry requests and
telecommands

Process all telemetry responses
and telecommand
acknowledgements

Main file: code.py

 Executes the commissioning
sequence

* Implement algorithms in the
commissioning manual using
our home-built library

def rwdemo():
ADCSrunMode (1)
setPowerControl(1,0,0,0,0,1,1,1,0,0)
setWheelSpeed(2000,1000,3000)
for i in range(69):
if i==20:
setWheelSpeed(1500,500,2500)
getWheelSpeed()
time.sleep(0.5)

setWheelSpeed(9,0,0)
setPowerControl(1,0,0,0,0,0,0,0,0,0)

ratedemo():
ADCSrunMode (1)
setPowerControl(1,1,0,0,0,0,0,0,0,0)

for i in range(190):
print(getRateSensorRates()) :355

36

