

The PY4 Mission: A Low-Cost Demonstration of Multi-CubeSat Coordination

Zac Manchester - Carnegie Melon University Max Holliday – Axient / NASA Ames Research Center Jan Stupl – NASA Ames Research Center

2024 CubeSat Developers Workshop - April 24th , CalPoly, San Luis Obispo

- 1. Content
- 2. Mission Overview
- 3. Implementation
 - 1. Spacecraft HW & SW
 - 2. I&T approach
 - 3. Launch
- 4. Initial on orbit results
- 5. Conclusion & Thanks

1. Content

2. Mission Overview

- 3. Implementation
 - 1. Spacecraft HW & SW
 - 2. I&T approach
 - 3. Launch
- 4. Initial on orbit results
- 5. Conclusion & Thanks

PY4 demonstrates RF-based swarm coordination

Manchester, Holliday, Stupl - The PY4 Mission - 2024 CubeSat Developers Workshop - April 24th, CalPoly, San Luis Obispo

- 1. Verification of S-band ranging <1 m precision (distances >500 km*)
- 2. Coordinated radiation measurements
- 3. On-orbit relative & absolute* position determination
- 4. OTA software & firmware* update and mesh forwarding
- 5. 3-axis MT-only sun-pointing demonstration
- 6. Drag-only station keeping*

ASA SST

CMU

*Extended mission demonstration

PY4 responds to multiple NASA relevant technology development disciplines

5

NASA Technology Taxonomy	PY4 Relevancy	NASA Technology Taxonomy	PY4 Relevancy	
TX02 Flight Computing and Avionics <i>TX02.1 Avionics Component Technologies</i> <i>TX02.2 Avionics Systems and Subsystems</i> <i>TX02.3 Avionics Tools, Models, and Analysis</i>	 PyCubed Avionics development Demonstration of Low SWaP-C Chip-scale technologies 	TX11 Software, Modeling, Simulation, and Information Processing <i>TX11.1 Software Development, Engineering, and</i> <i>Integrity</i>	 Verification and improvement of radiation models Verification of swarm modeling Verification of relative positioning algorithms 	
TX05 Communications, Navigation, and Orbital Debris Tracking and Characterization Systems <i>TX05.2 Radio Frequency</i> <i>TX05.3 Internetworking</i> <i>TX05.4 Network Provided Position, Navigation,</i>	 Development of RF-based swarm mesh networking among 4 satellite nodes RF-based ranging and on-orbit relative position determination 	TX11.2 Modeling TX11.3 Simulation TX11.4 Information Processing TX11.5 Mission Architecture, Systems Analysis and Concept Development TX11.6 Ground Computing		
and Timing		TX17 Guidance, Navigation, and	Advanced calibration techniques	
TX08 Sensors and Instruments TX08.1 Remote Sensing Instruments/Sensors TX08.2 Observatories TX08.3 In-Situ Instruments and Sensors	 Demonstration of coordinated multi-point radiation measurements of SAA 	TX17.2 Navigation Technologies TX17.3 Control Technologies TX17.4 Attitude Estimation Technologies TX17.5 GN&C Systems Engineering Technologies	 Experimental MT-only pointing controller Rel nav positioning 	
TX10 Autonomous Systems <i>TX10.1 Situational and Self Awareness</i> <i>TX10.2 Reasoning and Acting</i> <i>TX10.3 Collaboration and Interaction</i>	 OTA flight software update and autonomous forwarding Relative positional determination relative to chief Store and forwarding autonomous pointing demo commands 			

- 1. Content
- 2. Mission Overview

3. Implementation

- 1. Spacecraft HW & SW
- 2. I&T approach
- 3. Launch
- 4. Initial on orbit results
- 5. Conclusion & Thanks

PY4 consists (mostly) of RF payloads run by a PyCubed flight computer

NASA SST

NASA SST CMU

Communications Subsystem supports RF ranging experiments and telemetry downlinks

Manchester, Holliday, Stupl - The PY4 Mission - 2024 CubeSat Developers Workshop - April 24th , CalPoly, San Luis Obispo

Ranging Demo utilizes COTS LoRa chirp modulation

- Chirp modulation is ideal for time-of-flight ranging
- Newest S-band LoRa chips have ranging functionality built into the hardware
- Ranging is performed between four spacecraft
- GPS data will be logged during ranging experiments for ground-truth

Time of flight ranging process

NASA SST PY4 CMU

Coordinated Radiation Measurements implemented between 4 spacecraft

- The South Atlantic Anomaly (SAA) is an area where the Earth's inner Van Allen radiation belt comes closest to the Earth's surface, dipping down to an altitude of 200 km
 - This leads to an increased flux of energetic particles in this region and exposes orbiting satellites to higher-than-usual levels of radiation
- Distributed <u>total ionizing dose</u> measurements of the SAA have never been mapped in-situ before
 - In-situ distributed measurements will be able to differentiate spatial from time-based gradients of the South Atlantic Anomaly

PY4 will complete this demonstration

• Radiation measurements were taken from V-R3x but were not able to be downloaded due to power anomaly

RADFET to measure radiation

Existing modular in-situ radiation measurement platform. Previously validated at Ames BioSentinel Gamma Radiation Facilities

I&T included early vibe and TVAC testing of EDU hardware, and RF field tests

PY4 launched March 04 2024 on SpaceX T-10

- Space-X Transporter-10
- Launch Date: 04 March 2024
- Altitude: **525 km**
- Inclination: SSO 97.5 deg
- Launch Service Provider: Maverick Space Systems, Inc. of San Luis Obispo

Source: SpaceX via Maverick Space Systems

Source: Roger Hunter - NASA

- 1. Content
- 2. Mission Overview
- 3. Implementation
 - 1. Spacecraft HW & SW
 - 2. I&T approach
 - 3. Launch

4. Initial on orbit results

5. Conclusion & Thanks

PY4 L1 Tech Demo Threshold Requirements

ID	Short description	Requirement Description	Verification & Validation	Required # of SC
L1-001	S-band High Precision Ranging	PY4 shall demonstrate ranging with <1 m precision at a distance of at least 10 km between at least two satellite nodes	Orbit determination ground tool with inputs from spacecraft GPS and CSPoC TLEs.	2
L1-002	Relative On-orbit Position determination	PY4 shall demonstrate on-orbit relative positioning between all satellite nodes using ranges-only to an accuracy of 100 m (1- sigma)	Orbit determination ground tool comparison between SC ranging inputs and inputs from spacecraft GPS and CSPoC TLEs. Note: Algorithms based on Helioswarm architecture. Helioswarm is processing the relative position on the ground; PY4 will processing the relative position on-orbit	2
L1-003	Distributed sensor collection	PY4 shall coordinate and collect at least one radiation data packet from on-board sensors from each satellite node	Compare to simulated + terrestrial sensor data	2
L1-004	OTA Software Update	PY4 shall perform an over-the-air software update software on at least one satellite node w/ autonomous updates to at least one other satellite node	Spacecraft telemetry downlink from satellite nodes. Note: Demonstrates the flexibility & utility of having a Python real-time interpreted language as flight software	2
L1-005	Wheel-less 3-axis (Magnetorquer- only) Pointing	PY4 shall demonstrate 3-axis magnetorquer- only sun-pointing on at least one satellite node to an accuracy of \pm 10 deg (1-sigma)	Verify slew rate and pointing accuracy with Sun sensor readings; Note: pointing accuracy is limited by angle sensitivity of the sun sensor.	1

PY4 successfully exchanged ranging packets

-0.5

-1

-1

-0.8

18

PY4 demonstrated magnetorquer initiated Spin Stabilization

- This maneuver can be performed faster and more reliably than detumbling
- Plots show 3-axis gyro data recorded during maneuver ٠

NASA SST

CMU

Spacecraft goes from tumbling at several deg/sec to a stable spin about the z-axis at 20 deg/sec with minimal nutation .

- 1. Content
- 2. Mission Overview
- 3. Implementation
 - 1. Spacecraft HW & SW
 - 2. I&T approach
 - 3. Launch
- 4. Initial on orbit results
- 5. Conclusion & Thanks

- PY4 primarily focuses on onboard autonomous navigation and control algorithms and applying lessons learned from V-R3x and V-R3x suborbital demonstrations
- Range-based navigation technique provides a low Swap-C alternative to optical rel-nav strategies
 - Same navigation architecture as Helioswarm (mother + daughters) and similar GNC algorithms
- Demonstration of magnetorquer-only pointing could provide fallback option to recover from failed reaction wheels for future missions
- Demonstration of reliable OTA software updates to extend the useful life of SmallSats
 - Extended mission demonstration of OTA Software updates to includes enabling of out-of-family interspacecraft communication
- Continues development and advances capabilities of PyCubed open-source avionics stack
 - Reduces barriers to entry, enables low SWaP-C and fast mission development timelines
 - High impact: being used by many university teams and first-time CubeSat developers

Thank you

- NASA Ames
 - Max Holliday
 - Rachel Ticknor
 - Watson Attai
- CMU
 - Zac Manchester
 - Jacob Willis
 - Giusy Falcone
 - Fausto Vega
 - Paulo Fisch
- Outside support
 - NASA Ames TVAC
 - Richard Rowan
 - NASA Ames RF Spectrum
 - Bill Notley
 - Justin Hopkins

- Iridium
 - Frank Buntschuh
 - Joe Godles
- Maverick Space Systems
 - Vidur Kaushish
 - David Pignatelli
 - Austin Kugel
- SpaceX
 - Maria Matthews
 - Cyrus Foster
- Sponsor
 - SST
 - Roger Hunter
 - Elwood Agasid
 - Chris Baker
 - Justin Treptow
 - Anh Nguyen

