

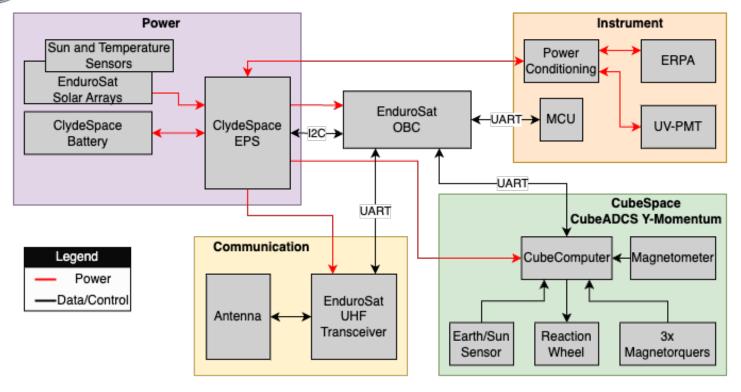
Command and Data Handling and Flight Software

Presenters: Shane Woods, Michaela Power, Damian Fowler

Contributors: Jared King, Jared Morrison, Erika Diaz-Ramirez, Haley Joerger, Jonathan Perez, Sia Manna

4/24/24–CubeSat Developers Workshop 3

3UCubed: 3 Universities; 3U CubeSats; Upwelling, Uplifting Undergraduates



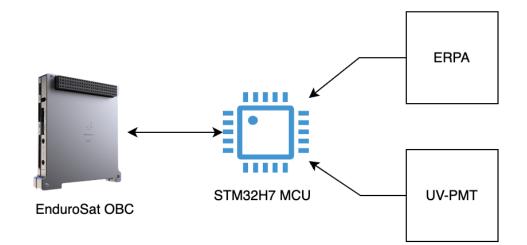
Introduction

- The IMAP Student Collaboration goals are *to augment IMAP science return, develop hands-on research experience for students, and contribute to diversifying space science.*
- **3UCubed**: 3 Universities; 3 CubeSats; Upwelling, Uplifting Undergraduates
- Three universities: Sonoma State University, Howard University, University of New Hampshire
 - Each university builds their own EM (3 EMs).
 - Our measure of success is to deliver to CSLI and launch one CubeSat (1 FM).
 - a strong recruitment and retention program, with a dedicated online community.
- Mission model
 - Two instruments being developed, combined size $\leq 1.5 U$
 - Joint work on the design between the three universities with specific work aligned with experience (UNH on instrument, SSU on ground station and FSW, HU on thermal).

4/24/24–CubeSat Developers Workshop

3UCubed: 3 Universities; 3U CubeSats; Upwelling, Uplifting Undergraduates

Instrument Design


• Two Instruments:

- Ultraviolet-Photo-Multiplier-Tube (UV-PMT)
- Electron Retarding Potential Analyzer (ERPA)

• STM32 Microcontroller Unit:

- Collects analog data from instruments
- Packetizes instrument data
- Sends data to OBC

4/24/24–CubeSat Developers Workshop

Instrument Data Packets

- Instrument data split into packets
 - Each ERPA packet: 48 bits
 - Sent to OBC every 6.25ms
 - Each ERPA HK Packet: 48 bits
 - Sent to OBC every 6.25ms
 - Each UV-PMT packet: 48 bits
 - Sent to OBC every 125ms
 - Each Housekeeping packet: 228 bits
 - Sent to OBC every 5s
- During testing, instrument MCU sends data to a computer
 - Computer runs GUI program to interpret and display incoming data

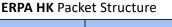
ERPA Packet Structure

SYNC	SEQ	ERPA	SYNC	SEQ
Fixed 2-byte hexadecimal	2-byte packet counter	ERPA data reading	Fixed 2-byte hexadecimal	2-byte pack counter

UV-PMT Packet Structure

SYNC	SEQ	РМТ		
Fixed 2-byte hexadecimal	2-byte packet counter	PMT data reading		

Housekeeping Packet Structure


SYNC	SEQ	МСИнк	TMP x4	V мон х9
Fixed 2-byte hexadecimal	2-byte packet counter	MCU Housekeeping	I2C temp sensors	Voltage Monitor ADCs

5

3UCubed: 3 Universities; 3U CubeSats; Upwelling, Uplifting Undergraduates

SWDMON

		5140		SWI MON		
		Fixed 2-byte hexadecimal	2-byte packet counter	ERPA SWP voltage reading		

SSU 🖑

Instrument Test with Computer

- Student created graphical user interface for reading instrument and instrument-MCU Data.
 - Ability to control behaviors of instrument MCU
 - Enable GPIOs
 - Increase SWP DAC output
 - Put MCU into Sleep Mode (Lowpower)
 - Wake MCU up from sleep

			IS Packet Interpreter				
X							
CONTROLS							
@sys_on PB5							
@ 3v3_en PC7							
@ 5v_en PC10	SYNC:	OXBBBB	SYNC:	OXAAAA	HK P. SYNC:	ACKET O	
	SEQ:	1240	SEQ:	1607	SEQ:	1468	
⊚n3v3_en PC6	ADC:		ENDmon:		vsense:		
Suggest of	1.00.		SWP MON:		vrefint:		
					TMP1:		
@n5v_en PC8			TEMP1:		TMP2:		
			TEMP2:		TMP3:		
@ 15v_en PC9			ADC:		TMP4:		
					BUSvmon:		
@n200v_en PC13					BUSimon:		
Gurrent ene			SDN1 HIC	PH -	2v5mon:		
					3v3mon:		
800v_en PB6			SDN2 HIC	SH	5vmon:		
-					n3v3mon:		
Step Up 🔒					n5vmon:		
					15vmon:	2.662	
					5vrefmon: n200vmon:	2.685 2.907	
Step Down 븆					n800vmon:	0.000000	
					noovinon.		
Sleep							
100							
Wake Up							
12							
RECORD							

Student-created instrument data graphical user interface

6

SSU

On Board Computer

UART

Message Queue

UART Interrupt

OBC

Data Cache

7

Data Saving Task

Data Processing

- Instrument data is sent to the OBC via UART
- Data goes through a series of steps before it can be sent down to Earth
- Note:
 - \odot Interrupt limitations
 - \circ Inter-thread communication
 - More steps between SD Card and Ground station ConOps!

SD Card

Radio

Groundstation

ConOps

- The OBC goes into different states depending on the status of the satellite
- Safe

 \circ Power up/Error

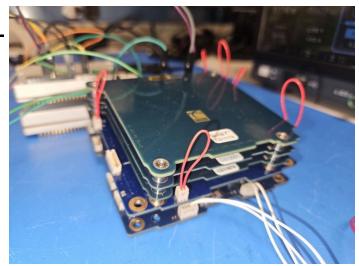
- Detumbling
 - $\circ\,$ Too much spinning
- Communication

 \circ Ground station in range

- Science
 - $\circ\,$ Orbit in position for data collection
- Idle
 - o Default state

4/24/24–CubeSat Developers Workshop

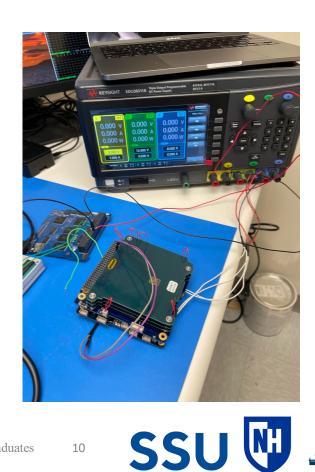
3UCubed: 3 Universities; 3U CubeSats; Upwelling, Uplifting Undergraduates


SCIENCE DETUMBLE SAFE IDLE 65≤GLAT≤80 Process Store raw OBC STATE Deployment instrument data instrument data 30-minutes delay If GS uplink received Downlink HK and Collect raw Power up instrument data instrument data Est: MEMS Rate Con: Detumble/Fast ormal Detumble Detumble If w>threshold Est: MEMS Rate lḟ ω⊲threshold Con: YSpin ADCS Est: FullEKF Con: YMomInit Est: FullEKF Est: FullEKF Est: FullEKF Con: YMonNadir Con: YMonNadir Con: YMonNadir Instrument Instrument Instrument Instrument INSTRUMENT start-up sleep sleep sleep Instrument ADC turned on

8

SSU

Electrical Power System


- I2C based ClydeSpace model 25-02452 EPS, alongside ClydeSpace BAT(battery) model 01-02685
- **Telecommands** are the foundation of commanding the EPS
 - o Write commands: establish events
 - Read commands: return resultant of a given event
- **Telemetry** data enables the OBC to monitor the continual operations of the EPS

Pre-Integration Testing

- Fabricated basic user interface to force OBC • commanding of ClydeSpace EPS using Endurosat SDK (software development kit) and customized FIDL file
 - Enabled for functionality testing of OBC and EPS communication
 - Ensured I2C network was functional
- Functionality testing included:
 - Obtaining the board status
 - Incrementing and reading the manual reset count
 - Powering the PDUs(Power Distribution Units) and checking their voltage/current

Electrical Power System Integration

- Integration focused on ClydeSpace EPS with Endurosat SDK generic EPS driver
- ClydeSpace telecommands needed to be **mapped** to Endurosat telecommands
- All commands that were **unsupported/supported** by ClydeSpace were **removed/added** from EnduroSat generic driver
- ClydeSpace EPS does not have a PIU (Power Integrated Unit mainboard) therefore housekeeping data needed **manual collection** implemented
- Communication with BATT was introduced in housekeeping collection

 EPS could not provide necessary telemetry for battery daughterboard data

Thank you

Any Questions?

4/24/24–CubeSat Developers Workshop

3UCubed: 3 Universities; 3U CubeSats; Upwelling, Uplifting Undergraduates