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Background
The growth of small satellite missions

Industry is moving toward more small satellites with increased capability and challenges with thermal 
management

• Civil, commercial and defense sectors are moving toward small satellites with more capabilities
– NASA Smallsat/Cubesat fleet
– Starlink
– Space Force missions

• Smaller form factors with improved capability will lead to warmer temperatures of the spacecraft
– Leads to challenging thermal management issues and a need to dissipate additional heat

Image credit: NASA SmallSat/CubeSat Fleet Missions Graphic Article in Space News, “Space Force sets sights on small geostationary communications satellites”, 
by Sandra Erwin, October 22nd, 2023 

Image used under license from SpaceX (https://www.spacex.com/trademark/)

https://www.spacex.com/trademark/
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Heat Rejection in Small Satellites
The need for additional radiator area
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Increased capability can be associated with increased heat generation:

Environmental Heat loads 
remain the same.

Internal heat generation 
increases Stored energy 

remains 
similar 

Therefore, for a fixed radiator 
temperature the radiator area 

must increase
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Enhancing Heat Rejection in Small Satellites

Integrated design strategies require increased area, improved efficiency, and conductance to fully enhance heat 
rejection

• Increase the heat rejection area
– Performance metric: Total Radiator Area

• Per Unit volume [m-1]
• Per unit mass [m2/kg]
• Operating temperature range [K or °C]

– Common Design Choices:
• Deployable radiators
• Alternate form factors

• Improve the efficiency of the radiator
– Performance Metric: Radiator Efficiency

• Ratio of Net radiated power to: 
– Blackbody with perfect sink
– Isothermal at maximum local temperature

– Common Design Choices
• High conductance interfaces and components
• Coatings

• Improve conductance to radiator panel
– Performance Metric: Conductance

• Heat transport per degree [W/K]
• Measured from bus to radiator panel

– Common Design choices
• High conductance interface
• Two phase heat transfer technologies

Image credit: Spacecraft Thermal 
Control Handbook, 2nd Ed.

Image credit: https://aerospace.org/sites/default/files/2022-08/DiskSat_0822.pdf

Radiator metrics to consider

Image used under permission from Advanced Cooling Technologies, Inc.
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Deployable Radiator Study
Study Overview

Objective: Survey the existing deployable radiator technologies for economical high performance small satellites

• Objective
– Survey existing and proposed deployable radiator technology. 
– Develop useful performance metrics 
– Propose technical performance targets

• Approach
– Literature search 
– Interviews with industry and academia
– Independent calculations as necessary

• Overview:
– 11 different companies & universities surveyed
– 14 technologies reviewed with performance metrics available

• TRL range from 6 to 2
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Deployable Radiator Study
Technology Overview

Industry technologies consists of conductive and two-phase heat transfer solutions

Redwire: Q-Rad
– High-efficiency deployable radiator panel 

with conductive coupling across hinge
– Passive spring deployment (single)

• 0° to 180° in less than 1 second
– TRL 5

• AFRL/RVSV SBIR Phase 1 & 2
• TVAC, Vibe

– Up to 1 m2 heat rejection area
– 100W to 300W heat rejection
– -196⁰C to +150⁰C

Thermal Management Technologies
– High-efficiency embedded heat pipe 

radiator with high conduction hinge
– Active deployment via actuator and coil 

spring mechanism (single)
• 0° to 180°

– TRL 6 
• SBIR Phase 2
• TVAC, Vibe, Deployment

– Up to 1 m2 heat rejection area
– 100W heat rejection
– -20⁰C to +45⁰C
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Deployable Radiator Study
Technology Overview

Industry technologies consists of conductive and two-phase heat transfer solutions

ThermAvant: Unspooling
– High-performance unspooling 

radiator with oscillating heat pipes
– Active deployment with unspooling 

motor (single)
• 0° to 180° in > 90 seconds

– TRL 4
• SBIR Phase 1 & 2
• Deployment, Vibe, Some TVAC

– 0.34m2 rejection area
– 1500W heat rejection (105°C source 

temperature)
– -65⁰C to +100⁰C

ThermAvant: Local Plastic 
Deformation

– OHP-integrated deployable radiator 
– Passive deployment using actuator with 

coil spring, motor + paraffin wax (single)
• 0° to 180° in > 90 seconds 

– TRL 3/4 (SBIR Phase 1 & 2)
• TVAC, Vibe, Deployment

– 0.136 m2 Heat rejection area
– 140W heat rejection (80°C source 

temperature) 
– -65⁰C to 100⁰C

Image is 
illustration only

OHP radiator

Hinge made of 
same material 
as OHP radiator
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Deployable Radiator Study
Technology Overview

Academia advancing research in small satellite thermal management using novel solutions 

BYU: Triangular Fin
– Triangular deployable radiator 

fins
– Passive deployment (multiple) 

on bimetallic coils
– TRL 4

• TVAC
– 0.0085 m2

– 35 W @ 30% duty cycle (90-
minute orbit)

– -50°C to +90°C

BYU: Radial Fin
– Radial deployable radiator fins
– Passive deployment (multiple) 

on bimetallic coils
• 0° to 90° deployment angle

– TRL 4
• TVAC

– 0.0085 m2

– 30 W @ 20% duty cycle (90-
minute orbit) 

– -50°C to +90°C

JPL/Cal Poly: AMDROHP
– Additively Manufactured 

Deployable Radiator with 
Oscillating Heat Pipes 

– Passive deployment (single) on 
pre-loaded flexible helical joints
• 0° to 90° deployment angle

– TRL 2/3
– 0.101 m2

– 50 W heat rejection (evaporator 
at 65°C)
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Deployable Radiator Study
Technology Overview

Academia advancing research in small satellite thermal management using novel solutions 

Utah State University: Active 
Thermal Architecture (ATA)

– High-performance deployable MFPL radiator 
panel with active sun tracking

– Active deployment using rotary fluid joint 
(multiple)
• 90° lock out

– TRL 6
• SSTP Office
• TVAC

– 0.04 m2

– 60W (6U) vs 150W (16U) 
– -20°C to +100°C
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Deployable Radiator Study
Technology Overview

Shape memory alloys are being used to actuate radiators. Cylindrically stowed radiators provide alternative storge 
requirements

NASA/Texas A&M: SMA 
Morphing Radiator

– Passive deployment on Ni-Ti shape 
memory alloy system (multiple)

– TRL 4
• Ambient Deployment testing

– 0.065 m2

– 10W
– 30°C to 120°C

JAXA: Re-Deployable Radiator
– Deployed using shape memory 

alloy and bias spring (400 
open/close cycles)
• 5° to 150°

– TRL 6
• TVAC, Deployment

– 0.28 m2

– 100W at 45°C surface temperature
– 0°C to +30°C

Pumpkin/YSPM: Rollout 
Deployable Radiator (RDR)

– Rollout deployable radiator
– TRL 3

• Prototype in process
• Testing in TVAC expected, Path 

to TRL 5/6
– 0.56 m2

– 330W, double sided radiation
– -70°C to +50°C
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Max TRL
Radiator Area 

[m2]
Radiating Power 

[W]
Operating Temperature Range 

[°C]
Deployed Area/Stowed Volume 

[m-1]

Redwire Space: Q-Rad 5 0.04 to 1 100 to 300 -196 to 150 242

Thermal Management Technologies 6 .10 to 1 100 - 20 to 60 32

ThermAvant: Unspooling 4 0.34 1500 Up to 105 109

ThermAvant: Local Plastic Deformation 4 0.136 140 Up to 80 398

JPL/Cal Poly: AMDROHP 2/3 0.069 50 Up to 65 32

BYU: Triangular Fin 4 0.0085 35 (30% DC in LEO) -50 to 90 234

BYU: Radial Fin 4 0.0085 30 (20% DC in LEO) -50 to 90 266

Utah State University: Active Thermal Architecture 6/7 0.04 60 (6U), 150 (16U) -20 to 100 20

JAXA: Re-Deployable Radiator 4 0.29 100 0 to 30 79

NASA/Texas A&M: SMA Morphing Radiator 4 0.0065 10 30 to 120 98

Pumpkin/YSPM: Rollout Deployable Radiator 2 0.56
330 (double sided 

radiation)
-70 to 50 124

Small Satellite Heat Rejection Technologies
Deployable Radiator Matrix

Solution space for deployable radiator technology is vast: Low aerial densities are a must and wide temperature ranges provide 
customers with mission flexibility

• Performance Trends:
– Deployable radiators need TRL 

investment
• Max: TRL 6
• Min: TRL 2

– Radiating power target of 100W 
for most panels

– Temperature ranges 
• Application or fluid specific
• Customers have options

– Deployed Area/Stowed volume 
largest for panel/hinge type 
radiators

– Low aerial densities
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Small Satellite Heat Rejection Technologies
Deployable Radiator Matrix Performance Metrics

• Aerial Density [kg/m2]
– NASA Space technology 

mission directorate identifies 
current deployable radiator 
aerial density as 19 kg/m2. 
Identified goal of < 6 kg/m2 to 
enable lunar missions and 
beyond.

– Technologies surveyed are 
below current state of the art (19 
kg/m2), and very near to the 
target goal of < 6 kg/m2

– TRL advancement of these 
technologies will allow for 
expansion of small sat 
capabilities and new mission 
opportunities

19 kg/m2 
6 kg/m2 
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Small Satellite Heat Rejection Technologies
Deployable Radiator Matrix Performance Metrics

• Deployed Area to Stowed Volume [m-1]
– Rectangular panel mounted deployable 

radiators
• Maximum value dictated by 

thickness of panel
• Trade off: minimizing thickness but 

maintaining structural integrity

– Cylindrically stowed radiators
• Assume a baseline of a single panel 

rolled into a storage diameter, D
• Can increase radiating area, by 

higher packing 
• Can lead to large turn down ratios

– Increases radiating area without 
affecting stowed volume

– Limited by how tightly the 
radiator can be packed 

Stowed configuration

𝐴

𝐴

Deployed configuration

𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑛𝑔	𝐴𝑟𝑒𝑎
𝑆𝑡𝑜𝑤𝑒𝑑	𝑉𝑜𝑙𝑢𝑚𝑒

=
𝐴
𝐴𝑡

=
1
𝑡
	

𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑛𝑔	𝐴𝑟𝑒𝑎
𝑆𝑡𝑜𝑤𝑒𝑑	𝑉𝑜𝑙𝑢𝑚𝑒

=
𝜋	𝐷𝐿
𝐷5𝐿

= π/D	

𝐴
𝐷

𝐿

Maximum value 
for a panel 

radiator

Minimum value for 
cylindrically stored 
radiators, assuming 

support structure can 
fit into bounding prism
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Small Satellite Heat Rejection Technologies
Deployable Radiator Matrix Performance Metrics

• Deployed Area/Stowed Volume [m-1]
– Single panel and Rollout radiators 

currently at Area/Stowed volume ~ 100
• Technologies that use conduction 

tend to have larger values

– Provides opportunity to look into 
alternate ways to increase the 
deployable area per unit volume (i.e. 
rollout radiators

– Rollout radiators can have large turn 
down ratios, however technologies are 
currently still under development
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Deployable Radiator Study
Summary

• Observing a need for increased heat rejection area on small satellites to enable missions not previously 
accessed

• Technologies currently being developed already have low aerial densities 6 kg/m2

– Need to continue to show development and advance TRL
– Need to obtain flight opportunities for higher TRL technologies

• More two-phase flow options
– Embedded heat pipes and oscillating heat pipes provide high heat transfer coefficients, improving the heat transfer 

from bus to radiator panel
– Two-phase heat transfer aids in more uniform temperature distribution and increased efficiency

• Some options available to increase the amount of available area
– Rollout radiators can provide more radiating area by having multiple turns during stow
– Challenges exist in these systems but benefit of large radiator areas can help enable even more missions
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