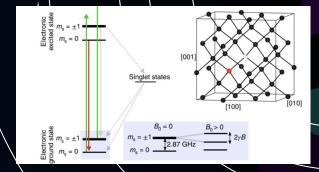
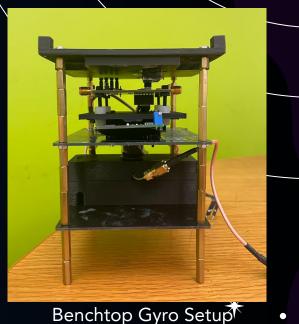
QUBESAT-2: Quantum CubeSat

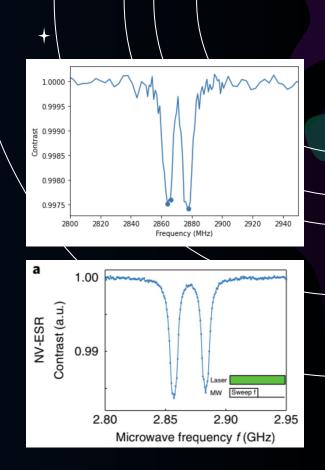
Nikitha Chalgeri and Krishnakumar Bhattaram Space Technologies at Cal, UC Berkeley


Project Overview


- Research the effects of LEO conditions on a quantum gyroscope based on nitrogen vacancy centers in diamond
- Exceed resolution, sensitivity, and drift stability limits of conventional gyroscopes (MEMs)
- Receive telemetry and ESR-level experimental data from payload to establish viability for future space applications

Payload: Quantum Gyroscope

- → NV centers in diamond can be very sensitive to magnetic fields.
- → A laser and 2.87 GHz signal can be applied to read out the rotation data via the fluorescence of the diamond.
- → QubeSat aims to miniaturize this technology to fit on a CubeSat and evaluate its performance in the extreme environment of space



* Payload: Operating Principle

Overview: Measure system electron energy

- transitions through electron (and nuclear) spin resonance
 - What We Learn:
 - Temperature
 - Magnetic field
 - Rotation rate (Berry Phase)
 - Future Experimentation/Work:
 - Improve contrast for ESR and implement precision timing
 - Rabi Oscillations (magnetic and thermal background sensing)
 - Spin Echo (coherence control)


Mechanical: Overview

- 2U Form Factor: 20cm x 10cm x 10cm footprint
- Compiled mass budget ~ 2.2kg
- 6061 T6 Aluminum chassis with Anodized surface
- 4x Brass standoff columns
- RBF/Inhibit Switches
- Antenna deployment mechanism
 - Orthogonal dipole tape
 measure antenna

COMMs and Power Systems: Overview

- Radio specifications: Hope RF
 - Integrated with PyCubed, convenient API
- The Mainboard (PyCubed) will serve as the centerpiece for all the electrical components of the Qubesat. This includes:
 - Comms: HopeRF
 - Payload: Gyroscope
- In return, these boards will all exchange data with the mainboard which will store and transfer the data.
- Solar Panels connected to the Mainboard will charge the Battery Board
- On a Separate Cycle, the Battery Board will provide the power requirements of the connected Payload, Comms and Controls boards.

Thank you!

...: