

Modular SDR platform for high performance space missions

Introduction

Telecommunications engineer from University of Vigo

ſ

Electronics area manager at Alén Space

Responsible for the design of the first spanish nanosatellite: XatCobeo

ESCOLA TECNICA SUPERIOR ENXEÑEIROS TELECOMUNICACION

UNIVERSIDADE DE VIGO

Core team of telecommunications engineers from University of Vigo

Alén Space now

Clean room

ISO 7
38 m²

- UHF half duplex circular polarization
- Full duplex S-Band
 - TX 2.025 GHz 2.110 GHz
 - RX 2.2 2.29 GHz

Vigo, (Spain) headquarters

Ground Station for operations

What we do

- **Communication solutions**: design and manufacture
 - SDRs, payloads, OBC/TTC, ground segment equipment...
- **Platform** integration:
 - 1U, 2U, 3U, 6U...
- Full **missions**:
 - From phase 0 to operations

The beauty of SDRs

DVB-T+DAB+FM+SDR RTL2832U R820T2 TCXO+BIAS T+HF

CERE

- Replace traditional analog components by software elements
 - ADC/DACs as close as possible to the antenna
- Once in digital domain, you can do "mostly everything" with software or hardware (FPGA) algorithms

Serpens mission (2015)

- IoT/M2M payload (437 MHz)
- (
 Environmental data sensors: Europe, America and Antarctica
- -M- ... Strong interference over Europe

- Better performance in southern hemisphere
- spectrum monitoring campaign
- Interference geolocation campaign

... we need a better communications payload

TOTEM SDR

- Zynq-7000 SoC + Wideband transceiver
 - Tuning range: 70MHz 6 GHz
- Multiple RF ports: x3 RX and x2 TX
- 4Gb ECC RAM
- Embedded Linux
- **CCSDS** Packet Utilization Standard support layer
- Radio applications / waveforms development
 - **GNURadio** support

New platform → new payloads

Cubesat missions are more ambitious

- Bigger platforms and constellation
- Pointing accuracy, propulsion, flight formation...
- Enhanced payloads
 - In orbit updates, multiapp, etc

New SDR payload for new needs

- Modular and flexible → Adapt more easily to mission needs
- Enhanced interfaces → Platform, ground testing
- Compact design
- New RF frontends
- Heritage and know-how with SDRs

TREVO

- Zynq UltraScale+ family + Wideband TRXs
- Multicore processing and FPGA flexibility
- Interfaces: CAN, UART, I2C, GPIOs, 1000 Base-T for SoCs...
- Mass **storage**: 2x microSD slots
- 4GB DDR4 RAM
- TREV0 control software
 - Set of services to operate the payload based on PUS
- Embedded Linux
- SKD based on Yocto
 - \circ \qquad Base layer from Alén Space that provides support for our boards
 - Additional package definitions: libiio, libad9361-iio, soapysdr, etc.
- Radio applications / waveforms development
 - **GNURadio** support

TREVO - Architecture

- x1 SoC + x1 TRX or x2 SoC + x2 TRX x1 SoC + x3 TRX

Developing radio applications

Software

FPGA

- For applications with high bandwidth requirements, part or most of the signal processing can be moved to the programmable section (FPGA) of the device.
- Algorithms accelerated by hardware

A great power comes ... with lot of heat

Depending on **the final use of the SoC**, the power consumption and power dissipation may vary a lot.

The main challenge is to **evacuate heat under vacuum conditions**. Thermal fillers are therefore used to improve heat conduction to the outside of the equipment, and radiators are used to dissipate heat away from the platform.

- Use of thermal fillers between ICs-shielding and shielding-thermal straps
 - Cho-TERM / Indium foil
- External radiator
 - Especially critical with RF frontends

Thermo-vacuum tests are required to correlate the thermal analysis.

Testing the payload

Vibration

- Acceleration (quasi-static) test
- Sine vibration test
- Random vibration

EMC

- Conducted & Radiated
- Immunity (internal and external)
- Noise floor

Thermal tests

- Thermal cycling test
- Thermal vacuum test
- Thermal balance test

Real use cases

- Sateliot payload for 5G NB-loT
 - World's first 5G NB-IoT LEO Satellite (under commissioning)
 - One **payload** with x2 SoC x2 TRX
 - TREVO Feeder link S-band (CCSDS Modem) → modem following certain subset of standards from CCSDS and encapsulating IPv4 traffic over CCSDS
- Alén Space 6U cubesat → **Satmar**
 - VDES payload
 - New maritime communication standard
 - Spectrum monitoring
 - UHF and L-band
- Other companies
 - ADS-B payload
 - TREV0 Feeder link

Future challenges

- Keep working closely with our customers to understand their needs
 - Product improvement
- Adapt quickly to their needs
 - Not easy in the new space era (quick, fast and cheap), while keeping high quality standards
- Shortage stock, logistics ...
 - Involved local suppliers is key for success
- Improve product documentation and support
 - SDRs are attractive but also overwhelming for some users

Thank you

