

Presenting a New Attachment Technology for In-space attachment to Unprepared Surfaces

SIMON LEE SIMON@CAMBRIANWORKS.COM

General On-Orbit Attachment Technology

Features

eTAP

- Uses the principle of electro adhesion
- Instant attachment
- Attaches to conductors and insulators
- Attaches to unprepared surfaces
- Conform to non-planar surfaces
- On/Off attachment
- Built with space rated materials

Demonstrated successfully with

Aluminum Alloys Anodized Al Steel Titanium

Glass Kapton Multi-Layer Insulation Carbon Fiber

How It Works

© 2021 CAMBRIAN WORKS, INC. DISTRIBUTION AND HANDLING SUBJECT TO THE RESTRICTIONS ON THE TITLE SLIDE

Electro-adhesion Anatomy

High Voltage Supply

• 1500V or higher

• Electrodes

 High-voltage electrodes generate the electric fields

Dielectric

- Electrodes encapsulated within a dielectric for safe handling
- Very thin package (<0.2mm)

Substrate

Target surface for attachment

Electro-adhesion Operating Principles

Conducting Substrates

 eTAP field mirrors charges in a substrate opposing the fields imposed on the substrate surface. (Image courtesy Guo, et al. 2020)

Dielectric Substrates

 eTAP field affects the polarization of molecules within the opposing surface. (Image courtesy Guo, et al. 2020)

General Notes

- Adhesion force varies with material properties and surface contact
- Attractive force scales with (eTAP) area and voltage
- Shear attractive forces are particularly strong: about 10x normal forces
- System-level power consumption (including highpower generation) is on the order of milliwatts
- Fields penetrate only to a shallow "skin depth": EMI/EMC concerns are minimal
- Minimal impact to substrates (i.e. no residues)

Demonstration Results

© 2021 CAMBRIAN WORKS, INC. DISTRIBUTION AND HANDLING SUBJECT TO THE RESTRICTIONS ON THE TITLE SLIDE

eTAP Normal Force Testing

- Normal force testing setup allows for force measurement for different eTAP pad designs, material types, and voltage levels
- Different force gauges are used for different force level measurements.

eTAP Testing Results

- Normal attractive forces are typically 15 mN/cm² at ambient pressure for a 4x4cm pad.
- Non-conductive coatings on conductive material do not affect attachment force.
- Insulator substrates have slightly higher normal attachment force than conductors.
- Normal force scales linearly with the attached area.
- Normal force attachment is significantly higher in vacuum than at ambient pressure.
- Mechanical design and mounting of the pads has a significant impact on the maximum attachment performance.

Data from example pads of 16 cm² area.

Linear Velocity Capture Testing

- Evaluate collision dynamics
- Repeatable impulsive docking at several velocities and angles
- Substrates can be swapped out
- Accommodates a satellite mass of 0.2kg

Air Compressor

4/20/2023

Linear Velocity Capture Results

- Conductive substrates have a faster electrical response time (0.02sec) compared to dielectric materials, and a resulting ability to capture objects with a higher velocity.
- Dielectric substrates coated with a resistive layer (≤15ohm/sq, 135nm thickness) behave more like conductive materials and allow capture at higher velocities
- 5 degrees off normal reduces the capture velocity

Velocity Capture Video

 Direction of motion is linear, allow us to understand the behavior of the flexible pads when it approaches with off-normal angles (e.g. 2° and 5°)

Image shows eTAP pad conformance at an off-normal angle of 5.

Applications

© 2021 CAMBRIAN WORKS, INC. DISTRIBUTION AND HANDLING SUBJECT TO THE RESTRICTIONS ON THE TITLE SLIDE

eTAP[™] Useful for a Wide Variety of Applications

Unprepared / Non-Cooperative Docking

- First soft capture
- Repeatable release and redock

Generalized Workspace Management

- Tool and component management (eTAP wall[™])
- Workspace augmentation (camera mounts, anchor points, etc.)

• Tele-Robotic and Servicing Assistance

- Attractive "touch" pull objects in, and absorb incoming momentum
- Augment existing mechanical graspers for in-space assembly

A Micro-Gravity Workspace

Questions?

Thank you!

SIMON LEE COO CAMBRIAN WORKS, INC. SIMON@CAMBRIANWORKS.COM