Ducks in Space: Update on Improved Performance, Characterization and Path to Space for Project OWL's Duck Radios

Rev: April 19th, 2023

Lab Photos

High altitude (85,000 feet) balloon test of Duck Radio, May 10, 2021

(c, ...) OWL CALPOLY

Project OWL (Cal Poly Sponsored Program 47756)

Agenda

Part 1 – AERO (Wednesday)

- Background
- CONOPs
- Roadmap

Part 2 – EE (Thursday)

- LEO Doppler Effects
- Alternate Frequency Bands
- CDP* Network Layer Research
- Contact Info

Project OWL Background

	-	lest Messap	65		
		mark (444	eerte.	-
		inter the			1010421-0.04
		han the			
		ingen 4 fran		-	der sont im mit
		Fertiles	4	1011	
		Super-Lines	4	-	
		ingen.com	1.1	-	-
		bure.com			
		States, 4 Steel			and short the st
		ingen. a. Sant	1.1	100	101040-0084
		Tax tim-	1.4	-	101003-010
		April Date			101 101 101 101
		Index 4 Date	1.4	-	10101-001
		Feet 4240			1011 (1017) - Anda at
		Super A local	4	-	101 101 100
		Pages 4 Real	- 4	1000	101110-0110-01
		tupo com	1.4		
		\$1994, 0, Sec.		4854	101 Mar 201 B
		ingre.class		48.0	STORY SHA
		Tan.Ow	1.14		101047-0114
		Res Line	1.4		101 007 010 4
					Train Street
6.001	- 97				

Hardware

Software

OWL Data Management System (DMS)

- OWL provides organization, whereabouts, and logistics through a simple communications and sensor network solution
- Mesh network protocol current using LoRa for PHYS layer
 - Creates comm infrastructure where lacking or destroyed:
 - Remote locations (exploration) & war zones
 - Disaster (e.g., fire, blizzard, Post *Hurricane Maria* deployment Puerto Rico)
- LoRa based, open source "ClusterDuck Protocol"

www.clusterduckprotocol.org

- SAN LUIS OBISPO
- Student & faculty support
 - AERO, CPE, EE, ME students
- Balloon launch resources
- Flight test / demonstrations
- Hardware and computing resources
- Lab characterization
- Performance improvement
- Path to space

In 2021 Cal Poly Demonstrated 850 km range with reasonable BER at 2.4 kbps

CONOPs & Space Test Plan

CONOPs

Test Plan & Facilities

Cal Poly Facilities

Cleanroom

Vibration Tables

Ground Stations

TVAC Chambers

Airborne Test

PolySat Team

Space-flight documentation developed Cal Poly facilities & capabilities meet space test requirements

LCHNIC SCHOOL ST

Ducks in Space: Update on Improved Performance, Characterization and Path to Space for Project OWL's Duck Radios

Rev: April 19th, 2023

Lab Photos

High altitude (85,000 feet) balloon test of Duck Radio, May 10, 2021

CAL POLY

Project OWL (Cal Poly Sponsored Program 47756)

Agenda

Part 1 – AERO (Wednesday)

- Background
- CONOPs
- Roadmap

Part 2 – EE (Thursday)

- LEO Doppler Effects
- Alternate Frequency Bands
- CDP* Network Layer Research
- Contact Info

LEO Doppler Effects

Relative motion of a LEOSAT to a ground station

Angle [°]	Doppler Shift [kHz]
0	23.79
30	20.60
55	13.65
90	0.00

Doppler Shift at 7,800 km/s at 915 MHz, varying with angle of elevation

Test Set-up

Results & Next Steps

- Measured BER less than 7E-7 in the presence 23 kHz static doppler with high SNR
- Measure performance over entire signal space of LoRa for static offsets at lower SNRs
- Develop software that allows for dynamically control of the offset frequency

Reasonable BER performance demonstrated despite doppler shift (static), developing dynamic test environment

Alternate Frequency Bands

Test Setup

Goals

- Validate previous work by Nottberg, Gumus [1].
- Demonstrate a robust Duck Radio satellite-terrestrial link

Hypothesis

• Switch LoRa frequency to amateur band with higher authorized output powers to improve robustness/range

Frequency Band	Frequency (MHz)	Max Tx Power (dBm)	Range Factor 1X = 100%	Comment	
ISM	915	30 (20 typ)*	1X	Current capability, experimental	
33 cm	1270 - 1295	37	>3X	Possible alternative, computed	
23 cm	2300 - 2310	40	>4X	Possible alternative, computed	
13 cm	2390 - 2450	40	>4X	Possible alternative, computed	

Transmitter module

IF Port Connected to

Duck Radio Output

Aluminum Isolation Box

Results & Next Steps

- Channel erasures accurately depict system reliability
- ✓ Improved Tx-Rx isolation
- ✓ Updated max power estimates
- Perform amateur radio band data analysis, varying LoRa parameters
- Verify estimates via performance tests

Implementing test environment to characterize performance in alternate bands

CDP Network Layer Research

Background

- OWL's Cluster Duck Protocol (CDP) mesh network allows users to transmit independently using a Pure ALOHA (p-ALOHA) methodology.
 - When a user has data to send, immediately send it
- This p-ALOHA method can result in interfering messages ("collisions"), reducing capacity and successful data throughput
- p-ALOHA significantly hinders network performance when there is high activity

Performance Metrics (65 minutes/test)

Received Packet Ratio:

- Received Packet Ratio = Total Packets Sent by DuckLinks Total Packets Received by PapaDuck
 ACK'ed Packet Ratio: ACK'ed Packet Ratio = Total Successful ACK Packets Received by DuckLinks Total Packets Sent By DuckLinks

 ACK'ed Data Ratio: ACK'ed Data Ratio = Total Number of Bytes Successfully ACKed (from ACK Packets) Total Bytes Sent by DuckLinks

 Successfully ACKed/Confirmed Data Throughput:
 - ACK'ed Throughput = $\frac{\text{Total Number of Bits Successfully ACKed (from ACK Packets)}}{\text{Time of test in seconds (3900 seconds)}}$

Experiments to overcome p-ALOHA

- Implemented a lightweight Listen Before Talk (LBT) Backoff algorithm into network firmware
- This LBT is referred to as a Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) method
- Ran four 65-minute 19-node network tests: 2 tests: p-ALOHA firmware network 2 tests: CSMA/CA firmware network
- Measured successful data throughput for each test

Summarized Test Results

Average of Results	Received Packet Ratio	ACKed Packet Ratio	ACKed Data Ratio	Successful / ACKed Data Throughput [bps]
Average non-CSMA MAC	0.55205	0.29877	0.25525	40.087
Average CSMA MAC	0.6459	0.4794	0.464	71.5265
Non-CSMA to CSMA Relative Improvement	1.170	1.605	1.818	1.784

>75% Improvement (1.784X) Demonstrated

Current Research Team Members

Faculty

- Steve Dunton (EE), Principal Investigator
- Dennis Derickson, Ph.D, P.E. (EE)
- Payam Nayeri, Ph.D (EE)

Graduate Student (EE)

Firmware Lead and SME: Kevin Nottberg (EE)

Undergraduate Students (AERO)

- Lead: Abigail Outcalt
- Support: Cole Sterba

Undergraduate Students (EE)

- Doppler: John Gharib, Ariel Freiman
- Alternate Bands: Daniel Montgomery Lucas Lucia, Daniel Xu
- Support: Annabella Piercey

Sponsor

Bryan Knouse, CEO, OWL Integration

Staff

- Contracts: Marianne Green
- Admin/Purchasing: Yvonne Lynch

sdunton@calpoly.edu ddericks@calpoly.edu

bryan@owlintegrations.com

