
Developing Satellite
Software

Jose Pastrana, Anas Matar, Marouf Paul, Zheng Yu Wong

Mission
● RHOK-Sat is a 1U CubeSat
● Characterize the performance and degradation of

perovskite cells
● Develop a fault

tolerant software

Satellite
Subsystems

3-axis magnetorquer

on-board
computer

transceiver

electrical
power system

antenna

10 cm 10 cm

10 cm

payload

Payload:
Top Plate

Perovskites

Aluminum
top plate
(milled
in-house)

CIGS
reference cell

Sun angle
sensor

Hardware Constraints

● Memory constraints
● Power budget constraints
● Experimental requirements
● Data budget constraints

Memory Constraints

NOR Flash

1MiB

FRAM
256 KiB

SRAM
32 KiB 2 SD cards

2 GiB x 2

Chosen based
on:

Volatile and non-
volatile

Radiation
hardiness

Space

saved
software

running
software

critical
parameters

sweeps, logs, potential
software images

SDRAM

32 MiB

Power Levels

● Power levels are monitored in a cyclic fashion
● Need to guarantee enough power to complete the

upcoming task
● Low power mode interruption midway through

processes can corrupt data and generate spurious
errors

Experimental Requirement

● Solar cells must be held at near
constant illumination to be
measured accurately

● Reduce tumbling rate to 1°/s
overall

● Sun angle must be within 35°
● Periodic check to determine

whether to take a sweep
● Measure temperature before and

after sweep

Communication

● The satellite is capable of
performing 42 measurement
procedures (sweeps) per orbit

● Additional logs and diagnostic
files

● Only capable of transmitting 28
sweeps per pass over our
ground station

Radio

● SatNOGS helps gather data
through participating ground
stations

● In return, we built a dedicated
ground station that is always
online for open use

● Using the amateur radio
bands

● Implementing a
transponder over the
weekends to contribute to
the ham radio community

Software Decisions

Minimal dependencies

Static memory

Cooperative multitasking

Cyclic execution pipeline

Architecture

● 3rd party software
● Keeping software size small is

critical
● Only for accessing low level

hardware
○ Hardware abstraction layers
○ FreeRTOS
○ AMU library

system apps

Error mitigation

Statically allocated memory

● Prevents memory

fragmentation bugs

● Frees unused memory

Cooperative scheduling

● Prevents collisions and

conflicts between tasks

● Predeterministic

● Easier to implement and

debug

● Leads to a cyclic execution

pipeline
static

dynamic

Cyclic
Execution
Pipeline

● Allows periodic health
checks

● Ensures the experiment is
run appropriately

● Avoids deadlocks and task
starvation

in
cr

ea
se

d
pr

io
rit

y

Fault Tolerance

Commands

Direct control over the subsystems from the
ground station

Ability to alter the configuration and
parameters of the satellite Logs

Save events for future diagnosis

Update

Handling runtime
bugs

Testing

Rigorous unit and
integration tests

Update process

● Packages are stored on the stack

● Written to NOR flash next to the 1st image

● Copied from NOR flash onto SDRAM

● Image selection is determined by

parameter in FRAM

Updating Software

Low bitrate data transfer

Software uploaded in packets

After stitching it's checked with
cyclic redundancy checks

NOR flash

SDRAM

1 2

Bootloader

● Cornerstone of safe software updates
○ Can’t just overwrite the only program we have. What if it

accidentally fails midway?
○ Write elsewhere (in NOR flash or SD) and boot from there next

time
○ Require a second-stage bootloader

● Ultimate fail-safe
○ Comes at the cost of long transfer and writing times

● Everyone recommends it
○ No one tells you how to do it!

Developing Satellite
Software

Jose Pastrana, Anas Matar, Marouf Paul, Zheng Yu Wong

