

National Aeronautics and Space Administration

CubeSat Launch Initiative (CSLI) Update

CDW 2023

Norman Phelps / VA-C Liam Cheney/ VA-C

Launch Services Program

NASA-KSC

Scan the QR code for more information about NASA's CubeSat Launch Initiative

CubeSat Launch Initiative

NASA

Mission

Providing launch opportunities to U.S. CubeSat developers, thereby giving them a pathway to conduct research in the areas of science, exploration, technology development and education.

Accomplishments to Date

- 200+ CubeSat Projects selected from 100+ organizations from 40+ states, Washington DC and Puerto Rico
- 150+ CubeSats launched to date

nage: ELaNa 19 Launch, Credit: Rocket Lab/Trevor Mahlmann

Recent Launches (last 12 months)

ELaNa 39, STP-S29A, LauncherOne, 07/02/2022

- CTIM-FD, University of Colorado at Boulder
- GPX2, NASA Langley Research Center

ELaNa 45, SpX-25, Falcon 9, 07/14/2022

- BeaverCube, Massachusetts Institute of Technology
- CapSat-1, The Weiss School
- D3, Embrey-Riddle Aeronautical University
- JAGSAT, University of Southern Alabama

ELaNa 49, SpX-26, Falcon 9, 12/29/2022

- MARIO, University of Michigan
- petitSat, NASA Goddard Space Flight Center
- SPORT, NASA Marshall Space Flight Center
- TJREVERB, Thomas Jefferson High School

ELaNa 50, SpX-27, Falcon 9, 03/14/2023

- ARKSAT-1, University of Arkansas
- LightCube, Arizona State University

ELaNa 40, Transporter 1, Falcon 9, 4/14/2023

LLITED, The Aerospace Corporation

ELaNa 47, Transporter 1, Falcon 9, 4/14/2023

CIRBE, University of Colorado at Boulder

Upcoming Launches (with Tentative Manifests)

• ELaNa 42

- R5-S3, NASA Johnson Space Center
- R5-S5, NASA Johnson Space Center
- R5-S6, NASA Johnson Space Center
- ELaNa 43
 - CatSat, University of Arizona
 - KUbeSat-1, University of Kansas
 - MESAT-1, University of Maine
 - OwlSat, Rice University
 - R5-S2-2.0, NASA Johnson Space Center
 - R5-S4, NASA Johnson Space Center
 - REAL, Dartmouth University
 - Serenity, Teachers in Space
 - SOC-i, University of Washington
 - TechEdSat-11, NASA Ames Research Center
- ELaNa 46
 - TechEdSat-12, NASA Ames Research Center
- ELaNa 48
 - CURIE, University of California at Berkeley

ELaNa 51

- Alpha, Cornell University
- BeaverCube II, Massachusetts Institute of Technology
- Big Red Sat-1, University of Nebraska at Lincoln
- BLAST, Yale University
- BurstCube, NASA Goddard Space Flight Center
- CougSat-1, Washington State University
- CySat-1, Iowa State University
- DORA, Arizona State University
- EagleSat-2, Embry-Riddle Aeronautical University
- Foras Promineo, Perkins School District
- GW-Sat, George Washington University
- HyTi, University of Hawaii at Manoa
- OreSat, Portland State University
- RHOK-SAT, University of Nebraska at Lincoln
- SNoOPI, Purdue University
- ELaNa 52
 - AEPEX, University of Colorado at Boulder
 - CANVAS, University of Colorado at Boulder

- ELaNa 53
 - Dione, NASA Goddard Space Flight Center
 - SPRITE, University of Colorado at Boulder
- ELaNa 55
 - INCA-2, New Mexico State University
- ELaNa 56
 - TRYAD, Auburn University
- ELaNa 57
 - M3, Missouri University of Science and Technology

As of April 2023, Subject to Change

Recent CSLI Selectees

NASA Launch Services Program

5

CSLI Eligibility

The CSLI Announcement of Partnership Opportunity is divided into two Appendices

Educational Institutions and Non-Profits

Eligibility under Appendix A is limited to US Accredited Educational Organizations and US. Non-Profits. Entire project must be led, built and managed by students, with designated student project managers. Professional and Faculty Mentors allowed and encouraged

Internal NASA Projects

Eligibility Limited to NASA Centers and/or JPL for the purpose of early career workforce development. One or more team mentor(s) consisting of senior NASA employee(s) is encouraged to promote knowledge transfer

How to join CSLI...

Lessons Learned...

Credit: XKCD https://xkcd.com/1992/ https://xkcd.com/license.html

Words to the Wise

- Be flexible to optimize manifesting options (and reduce launch cost)
 - Be compatible with many dispensers
 - Comply with CubeSat Design Specification (CDS)
 - Comply with LSP-REQ 317.01 whenever possible
- Be flexible with orbit requirements
 - Unique orbits drive costs & reduce launch opportunities
 - Avoid overly congested orbits
- CSLI's contribution to your launch service is capped at \$300K you or your sponsor are responsible for covering any "overages"
- Choose a UNIQUE name for your CubeSat and BE CONSISTENT! Avoid names that are a single common work ("Chart," "Press," "Hello 5"). Avoid special ch@r@cter\$, exponents, subscripts, emojis, etc.
- Communicate with LSP about any hazardous materials or "provocative features"
- If your SC can affect its orbit (ex., propulsion system or drag device)
 - Use GPS and reflectors to assist in tracking
 - Consider cybersecurity
- Design to passivate your SC at end of mission (ex., deplete batteries, disconnect solar panels, vent stored pressure)

- Start early and be persistent!
- We cannot integrate your spacecraft for launch without all applicable licenses. <u>This can cause you to miss your launch!</u>
- Plan which licenses you will need (IARU, NTIA, NOAA, FCC)
- Be able to disconnect your transmitter via ground command
- Be flexible in case your preferred frequency/band is not available to you
- Prepare your ground station (and backup) to be operational and tested well before launch. Practice tracking/listening to existing spacecraft.

Image Credit: NASA/JPL-Caltech

Reference Documents

NASA

NASA CubeSat 101: https://www.nasa.gov/sites/default/files/atoms/files/nasa_csli_CubeSat_101_508.pdf

NASA Spacecraft Conjunction Assessment and Best Practices Handbook: <u>NASA Releases Best Practices Handbook to Help</u> <u>Improve Space Safety | NASA</u>

NASA CSLI: <u>https://www.nasa.gov/directorates/heo/home/CubeSats_initiative</u>

NASA Small Spacecraft Virtual Institute: <u>https://www.nasa.gov/smallsat-institute</u>

CubeSat.org: https://www.CubeSat.org/

Space-track.org: https://www.space-track.org/auth/login

NOAA Remote Sensing Licensing: https://www.nesdis.noaa.gov/CRSRA/generalApplication.html

IARU: https://www.iaru.org/on-the-air/satellites/

FCC Experimental Licensing System Search: <u>https://apps.fcc.gov/oetcf/els/reports/GenericSearch.cfm</u>

FCC Generic License Search: <u>https://wireless2.fcc.gov/UIsApp/UIsSearch/searchLicense.jsp</u>

Sarah Rogers Collection: <u>http://phxCubeSat.asu.edu/resources/documents</u>

GSFC-STD-7000 (GEVS) GSFC-HDBK-8007 FCC DA: 13-445 NASA/SP-2007-6105 NASA/SP-20205011318 SMC-S-016 NASA-STD-6016 TOR-2016-02946 NASA-STD-8719.14 LSP-REQ-317B

Scan the QR code for more information about NASA's CubeSat Launch Initiative

Questions?

Email: norman.l.phelps@nasa.gov Email: liam.j.cheney@nasa.gov

Scan the QR code for more information about NASA's CubeSat Launch Initiative

