
ACCEPTANCE SCREENING AND CELL MATCHING: ACHIEVING OPTIMAL COTS LI-ION BATTERY PERFORMANCE FOR SPACE APPLICATIONS

26 April 2023

Cho lab, LaSEINE Kyushu Institute of Technology, Tobata, Kitakyushu, Fukuoka, Japan

*Shrestha.hari-ram852@mail.kyutech.jp

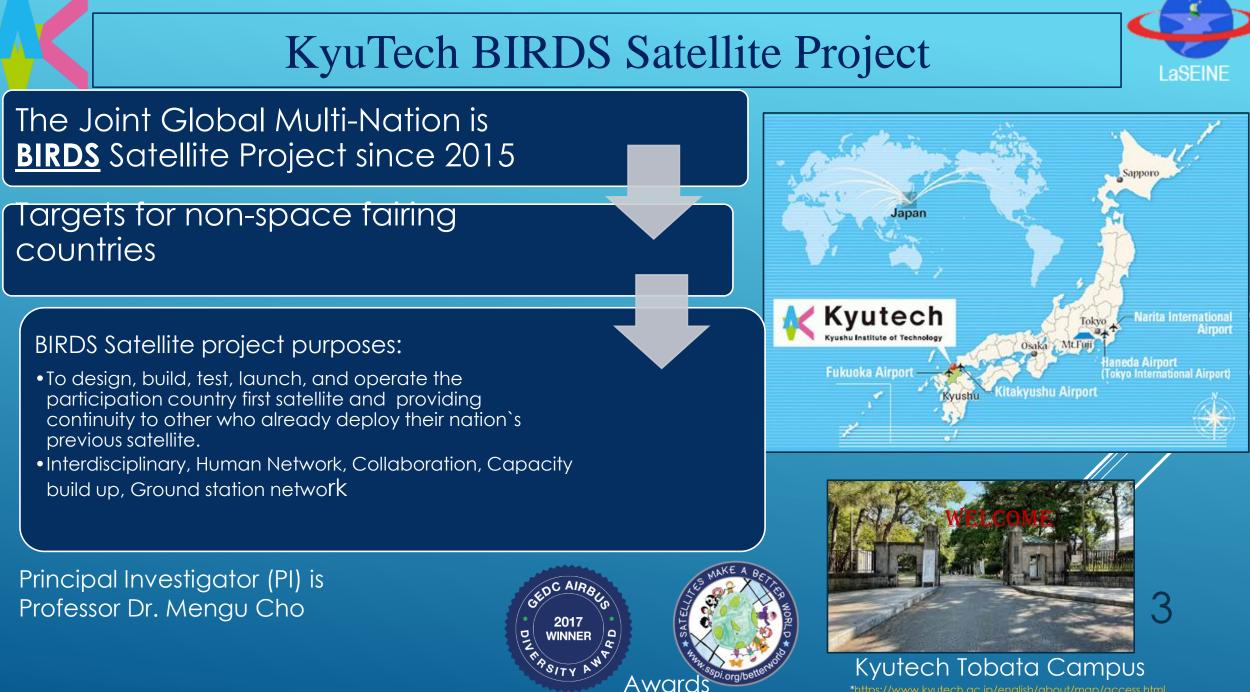
CUBESAT

Pic credit: ISS/JAXA/NASA

Overview :BIRDS Satellite project

Kyutech's satellites used battery

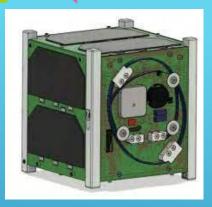
Screening and battery(cells) matching

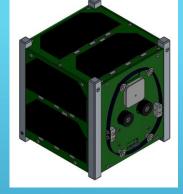

Charger discharge system

Battery(cells) screening flow chart

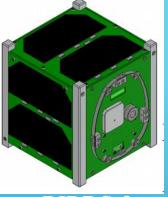
Environmental tests

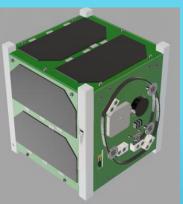
Battery(cells) screening data & results


Battery assembled procedures


*https://www.kyutech.ac.jp/enalish/about/map/access.html

Introduction : Kyutech's satellites & used battery




BIRDS-1

BIRDS-2

BIRDS-3

BIRDS-4

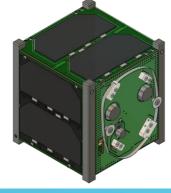


Figure 1. Horyu-IV satellite

BIRDS-5

eneloop

eneloo

BIRDS Satellite **KITSUNE** Type: Nickel-Metal Hydride Lithium Ion Battery, Sanyo NCR 18650 GA Battery(eneloop), Panasonic Configuration 3 series 2 parallel (3S2P) 2series3parallel (2S3P) 10,350 mAh Capacity: 3,800 mAh Nominal Voltage: 1.2V * 3 = 3.6V3.6*2=7.2 V 48 g*6=288g Weight: 27g * 6 = 162gSize cell :(Diameter) 14.35(D) x 50.4(H) mm 18.5(d)mmx65.3 (H) x (Height):

Li-Ion

Pic: by Kyutech


Screening and cell matching

- To construct the space applicable battery from COTS* Li ion /NiMH or other battery cells.
- And, it is subjected to acceptance screening and cell matching tasks before to the assemble battery.

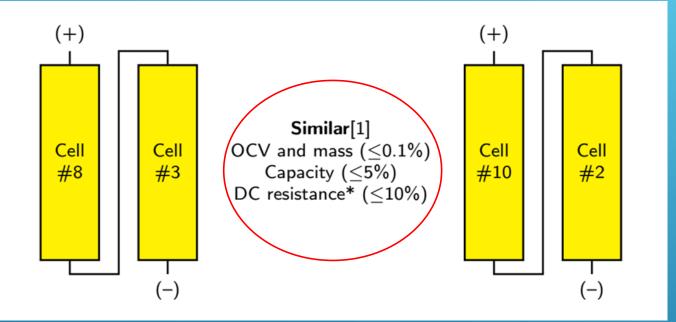
Acceptance screening of Cells

It consist of a baseline of physical and electrochemical tests**that are rechecked before and after the environmental tests

Characteristics **

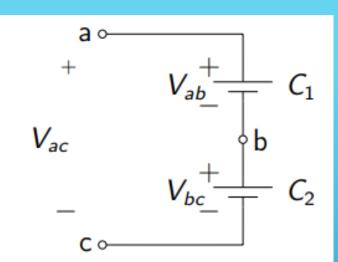
- Open circuit voltage
- Capacity
- Dimensions

*and/or AC impedance

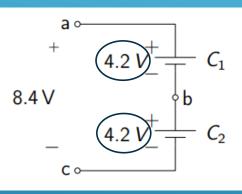

- DC resistance*
- Charge retention
- Mass

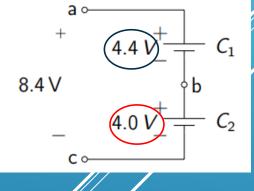
OBJECTIVE

- Find defects
- Assemble the best batteries



Cell matching process




OBJECTIVE

- Avoid unbalanced voltages
- Mitigate the state of -charge imbalance

Risk:

Overcharge External short Internal short Over discharge High temperatures

Thermal runway

How Does it work?

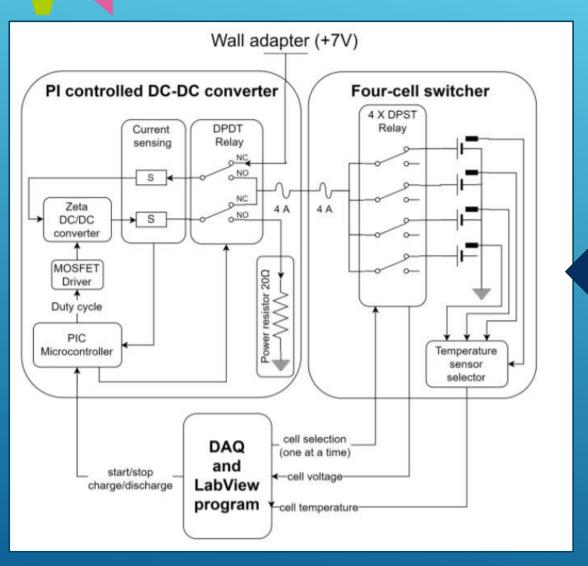
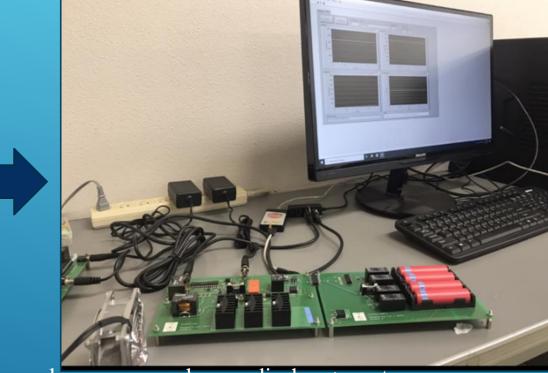



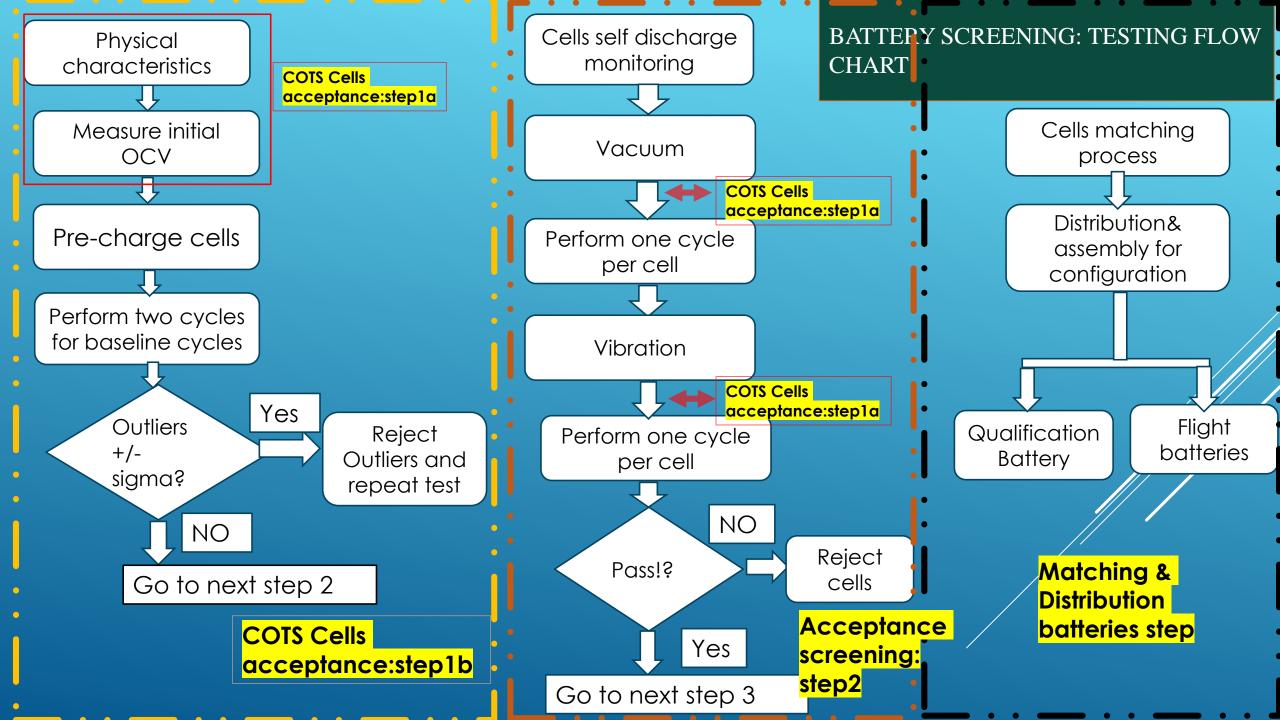
Fig: charger discharger system working diagram

State 1:Converter work as a buck converter

Relay is set in charging position(NC),the power source is connected to the converter input and the cell switcher is connected to the

output.

LaSEINE


Fig: real appearance charger discharge system

State 2:Converter work as a boost converter

• Relay is set in discharging position(NO), the cell 7 switcher is connected to the input and power resistor is connected to the output.

- A charge/discharge system is a system to assist cell matching and construction of a custom battery using COTS cells. The cells are screened on the system and generates the required data
- The system is used to screen and get acceptable batteries after checking the physical and electrochemical characteristics of each cell after every test (Thermal vacuum and Vibration Test)
- The screening system shall fulfill the safety review requirement for launch providers.

Cycles test and Environmental test

Cell screening steps: 1.Pre discharge 2.Full charge

3.Full discharge


4.Post ChargeTotal time for test: 17hours for 4 batteries

Vacuum	Temperature	Time
< 1x10^-3 Pa	20 – 25 degree C	6 hour

Random Vibration Level for Li ion battery

Axis	Frequency (Hz)	PSD (G2/Hz)	Acceler ation (Grms)	Time (sec)		
	20	0.020				
All	80	0.080	8.6	60		
All	350	0.080	0.0	00		
	2000	0.014				

EINE

Environmental test-before vacuum test and after vibration test data and results

- Tal e: **KITSUNE** batteries results based Physical measurements: Length (mm) OCV (V),mass(mg) ,Diameter(mm)
- All batteries are PASSED based on physical character measurements.

			Before			After					Difference					
Ν	OCV	Length	Diameter	Mass	Visual Ins.	OCV	Length	Diameter	Mass	Vicual	Inc	OCV	Length	Diameter	Mass	Statu
		[mm]	[mm]	[g]	v 15uai 1115.	(vibration)	[mm]	[mm]	[g]	Visual Ins.	[<0.1%]	[<1%]	[<1%]	[<0.1%]		
13	3.745	64.95	17.95	47.27	OK	3.747	65.02	18.00	47.29	OK		0.05%	0.11%	0.28%	0.04%	PASS
14	3.746	64.91	17.98	47.25	OK	3.747	65.00	18.09	47.21	OK		0.03%	0.14%	0.61%	0.08%	PASS
15	3.740	64.94	18.00	47.23	OK	3.742	65.02	18.01	47.22	OK		0.05%	0.12%	0.06%	0.02%	PASS
16	3.741	64.96	18.02	47.29	OK	3.740	65.02	18.20	47.28	OK		0.03%	0.09%	1.00%	0.02%	PASS
17	3.733	64.95	17.95	47.43	OK	3.736	65.02	17.99	47.42	OK		0.08%	0.11%	0.22%	0.02%	PASS
18	3.742	64.97	17.98	47.29	OK	3.741	65.03	18.00	47.28	OK		0.03%	0.09%	0.11%	0.02%	PASS
19	3.740	64.95	18.01	47.25	OK	3.739	65.01	18.04	47.24	OK		0.03%	0.09%	0.17%	0.02%	PASS
20	3.746	64.97	18.00	47.24	OK	3.744	65.03	18.15	47.23	OK		0.05%	0.09%	0.83%	0.02%	PASS
21	3.739	64.96	17.98	47.21	OK	3.740	65.01	18.08	47.24	OK		0.03%	0.08%	0.56%	0.06%	PASS
22	3.742	64.97	17.97	47.35	OK	3.740	65.02	18.06	47.38	OK		0.05%	0.08%	0.50%	0.06%	PASS
24	3.748	64.96	17.99	47.19	OK	3.746	65.03	18.00	47.23	OK		0.05%	0.11%	0.06%	0.08%	PASS
26	3.746	64.94	17.90	47.23	OK	3.745	65.03	18.00	47.24	OK		0.03%	0.14%	0.56%	0.02%	PASS
27	3.747	64.99	17.99	47.25	OK	3.745	65.02	18.05	47.27	OK		0.05%	0.05%	0.33%	0.04%	PASS
28	3.745	64.97	18.03	47.23	OK	3.745	65.02	18.00	47.22	OK		0.00%	0.08%	0.17%	0.02%	PASS
29	3.745	64.97	18.03	47.31	OK	3.743	65.03	18.10	47.32	OK		0.05%	0.09%	0.39%	0.02%	PASS
34	3.735	64.96	17.95	47.36	OK	3.738	65.01	18.07	47.37	OK		0.08%	0.08%	0.67%	0.02%	PASS
35	3.740	64.97	17.96	47.20	OK	3.739	65.03	18.10	47.22	OK		0.03%	0.09%	0.78%	0.04%	PASS

Environmental test-before vacuum test and after vibration test data

and results

Table: KITSUNE batteries results based on charged and discharge DC resistance [Internal Impedance] (m Ω)and Capacity (mAh)

Failure rate of battery during test, Total batteries (cells) are 23 No 1 to 12 were used for EM satellite 5/36 =14%

before and after screening tests, changed the battery internal resistance and capacity

	KITSUNE Cell Screening - Environmental Test														
		Before				-	After				Difference				
	N	Cha	rged	Disch	arged	Cha	rged	Disch	arged	Cha	urged	Disc	harged	Status	
		DC Res	Capacity	DC Res	Capacity	Status									
		[mΩ]	[mA/h]	[mΩ]	[mA/h]	[mΩ]	[mA/h]	[mΩ]	[mA/h]	[<10%]	[<5%]	[<10%]	[<5%]		
	13	71.90	3017.50	90.70	3341.00	75.00	3018.20	93.00	3345.00	4.31%	0.02%	2.54%	0.12%	PASS	
	14	73.40	3054.50	95.70	3355.00	75.30	3017.60	98.80	3341.00	2.59%	1.21%	3.24%	0.42%	PASS	
	15	73.80	3036.90	93.40	3343.00	72.30	3035.10	91.50	3352.00	2.03%	0.06%	2.03%	0.27%	PASS	
, [16	73.40	3065.00	94.60	3371.00	75.30	3006.60	95.30	3351.00	2.59%	1.91%	0.74%	0.59%	PASS	
	17	68.00	3117.00	95.70	3373.00	70.70	3050.30	94.60	3373.00	3.97%	2.14%	1.15%	0.00%	PASS	
	18	75.00	3055.70	92.60	3359.00	71.10	3035.80	93.00	3358.00	5.20%	0.65%	0.43%	0.03%	PASS	
	19	73.00	3084.40	91.10	3363.00	72.30	3028.40	96.50	3342.00	0.96%	1.82%	5.93%	0.62%	PASS	
	20	81.90	3046.50	97.60	3355.00	77.60	3002.20	97.60	3339.00	5.25%	1.45%	0.00%	0.48%	PASS	
	21	75.70	3054.50	96.10	3367.00	72.60	3041.10	95.30	3363.00	4.10%	0.44%	0.83%	0.12%	PASS	
,	22	77.30	3075.50	96.50	3387.00	71.10	3056.80	91.10	3383.00	8.02%	0.61%	5.60%	0.12%	PASS	
	23	80.00	3066.40	94.20	3368.00	69.20	3045.10	90.00	3364.00	13.50%	0.69%	4.46%	0.12%	FAIL	
	24	73.40	3084.60	89.60	3360.00	70.00	3030.20	93.40	3342.00	4.63%	1.76%	4.24%	0.54%	PASS	
	25	78.40	3029.20	99.20	3356.00	70.70	3012.10	91.50	3359.00	9.82%	0.56%	7.76%	0.09%	PASS	
	26	74.60	3069.80	96.50	3363.00	71.10	3032.00	95.00	3344.00	4.69%	1.23%	1.55%	0.56%	PASS	
	27	73.80	3036.90	93.40	3343.00	72.30	3035.10	91.50	3352.00	2.03%	0.06%	2.03%	0.27%	PASS	
	28	73.00	3043.90	93.40	3362.00	69.20	3035.10	93.00	3354.00	5.21%	0.29%	0.43%	0.24%	PASS	
	29	72.30	3056.80	92.30	3352.00	68.80	3049.50	87.60	3373.00	4.84%	0.24%	5.09%	0.63%	PASS	
	30	82.30	3008.80	100.00	3356.00	71.50	3028,20	90.00	3365.00	13.12%	0.64%	10.00%	0.27%	FAIL	
	31	86.10	2982.70	102.30	3334.00	74.20	3003.30	93.40	3345.00	13.82%	0.69%	8.70%	0.33%	FAIL	
	32	74.60	3032.70	94.20	3365.00	70.00	3024.20	91.90	3357.00	6.17%	0.28%	2.44%	0.24%	PASS	
	33	94.20	2967.80	122.60	3326.00	72.30	3014.00	96.50	3349.00	23.25%	1.56%	21.29%	0.69%	FAIL	
	34	86.10	3009.30	103.80	3371.00	86.10	3009.30	103.80	3371.00	0.00%	0.00%	0.00%	0.00%	PASS	
	35	75.00	3066.00	96.50	3371.00	71.50	3048.60	92.60	3389.00	4.67%	0.57%	4.04%	0.53%	PASS	
	36	68.40	3056.10	96.10	3349.00	76.50	3028.10	106.10	3360.00	11.84%	0.92%	10.41%	0.33%	FAIL	

Data and Results

Max. 24% Dc res had changed before and after the environmental test

Kitsune-Discharge cycle internal impedance [before and after environmental test]

140 Bef_Dischrge [DC Res] Aft Dischrge [DC Res] 120 100 DC Res[m ohm] 40 20 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 **Battery** Nos

Max. 0.7% capacity had changed before and after the environmental test

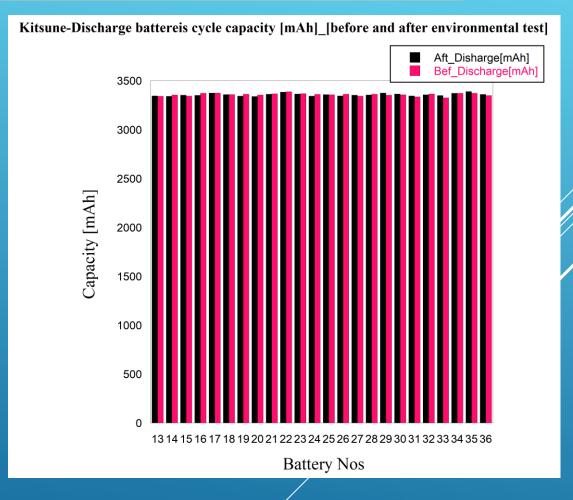


Fig: Result of Kitsune batteries discharge cycle DC Res[m ohm] _before and after environmental test Fig: Comparison result of Kitsúne batteries discharge cycle Capacity [mAh] _before and after environmental test

Charge and discharge- Kitsune

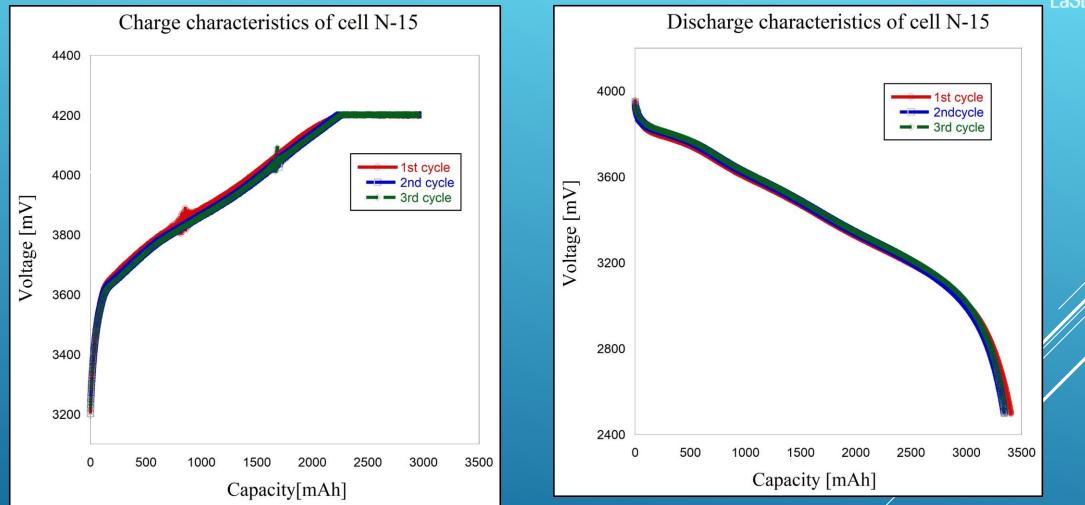
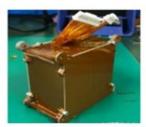
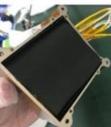


Fig: Kitsune FM battery's charge (left) and discharge (right) 3-cycles graph result [example battery no:15]

*Due to charger discharger system board noise shows the spikes during charge cycle

Battery assemble procedure-Kitsune satellite


gel


STEP 1: 6 batteries are assembled. A thermistor is placed inbetween.

STEP 3: Polymide heater is wrapped around the battery pack

STEP 5: Battery cables are connected to the connectors and the battery box is closed

STEP 4: The battery pack is placed into the battery box covered with shrinkable tube

STEP 2: Batteries are

then covered by lambda

The assembled battery pack had an open circuit voltage of 7.46V

Fig: Battery layers with material

Fig:Assemble procedure steps

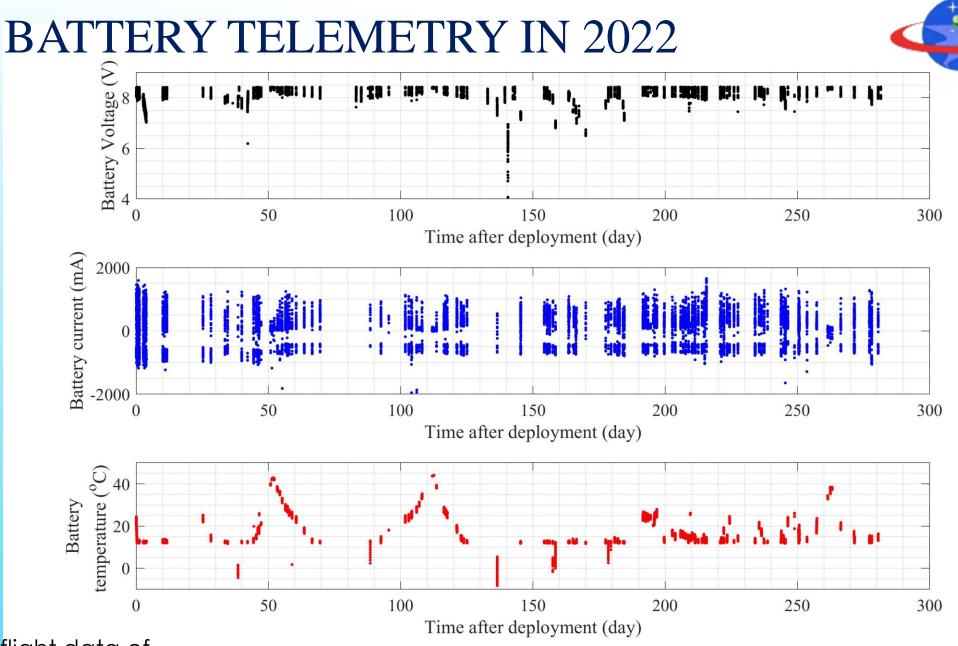


Fig: Kitsune satellite flight data of battery performance

Conclusion

For battery construction for space application,

- To select the closest characteristics value for Battery(cells) configuration, priority categories are DC_ resistance, Capacity, OCV and mass in sequence
- To perform the cells cycles test minimum three times including environmental test
- Assemble the properly the electrical and thermal insulator inside the battery box

	Cell#	OCV(<0.1%)	Mass(<0.5)	Capacity(<5%)	DC Resistance(< 10%)
Set A string	15	3.742	47.22	3352.00	91.50
	27	3.745	47.27	3352.00	91.50
Average		3.7435	47.245	3352.00	91.50
Standard Deviation	ı	0.0021	0.0354	0.0000	0.0000
Deviation in percentage		0.06%	0.07%	0.00%	0.00%

Acknowledgements

• This project was supported in part by JSPS Core to Core program, B. Asia-Africa Science Platforms.

1.Dr.Rodrigo CORDOVA, 3U satellite project manager
2.Dr.Necmi CIHAN, KITSUNE project manager
3.Reynel Josue GALINDO ,D1 ,CURTIS team member
4.Dr.Yasir ABBAS, MO-1 satellite member
5.BIRDS satellite projects

Faculty of Engineering (school office and LASEINE family)

References:

United Nations, "Recommendations on the Transport of Dangerous Goods: Manual of Tests and Criteria, Part III, sub-section 38.3.
 Sixth revised edition," United Nations Publications, New York and Geneva, 2015
 NASA Johnson Space Center, JSC 20793. Crewed Space Vehicle Battery Safety
 Requirements., Houston, Texas, 2014.
 NASA Johnson Space Center, JSC 66548. Requirements fro Fligth Certification and Acceptance of Commercial Off the Shelf
 Lithium Ion Batteries., Houston, Texas, 2013
 International Organization for Standardization, ISO 17546. Space systems - Lithium ion battery for space vehicles - Design and
 Verification requirements, 2016
 Kitsune battery verification report/JAXA/Kyutech 2021