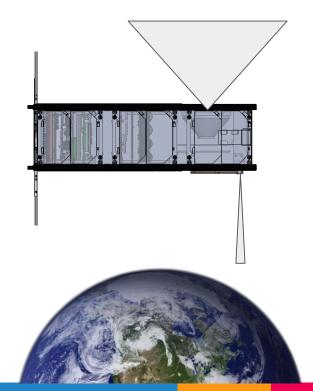

A Bimodal 3U-CubeSat Mission to Measure the Effects of Solar Particle Events on the Earth's Atmosphere

CubeSat Developers Workshop - April 25, 2023 James Crawford, Katlynn Vicuna

Advisor: Dr. Peter Englert

EPET (Earth and Planetary Exploration Technology) Earth and Planetary Exploration Technology (EPET) Certificate **EPET 201: Space Exploration B.S.** Mechanical Engineering concentration in Aerospace Engineering Hawai'i Space Grant Consortium & EPET 301: Space Science & **UROP** Funding Instrumentation **Payload Design & Development EPET 400: Space Mission Design NASA CSLI Proposal EPET 401: Capstone Project Payload Procurement & Production**

Introduction


VIA-SEEs aims to address key knowledge gaps as NASA has defined across multiple decadals and the NASA Heliophysics Roadmap (2014-2033) which states that understanding Earth's atmospheric response to auroral, radiation belt, and solar energetic particles in the form of variability in Nitrogen Oxides (NOy) and Ozone (O₃), is of a high importance.

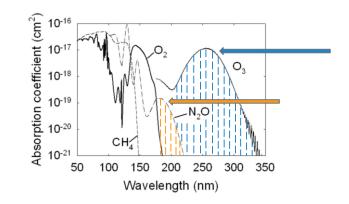
While other missions (e.g. AURA, UVSC Pathfinder) have studied Nitrogen Oxides and Ozone, or Solar Energetic Events in Low Earth Orbit (LEO), no mission has yet integrated both into one spacecraft.

Our Mission

Project VIA-SEEs intends to utilize one 3U CubeSat in Low Earth Orbit (LEO) to measure the direct correlation between Solar Energetic Events and the variabilities in the total reactive Nitrogen Oxides (NOy) and Ozone (O_3) concentration in the mesosphere, thereby enhancing our understanding of how our atmosphere changes in response to solar particle radiation.

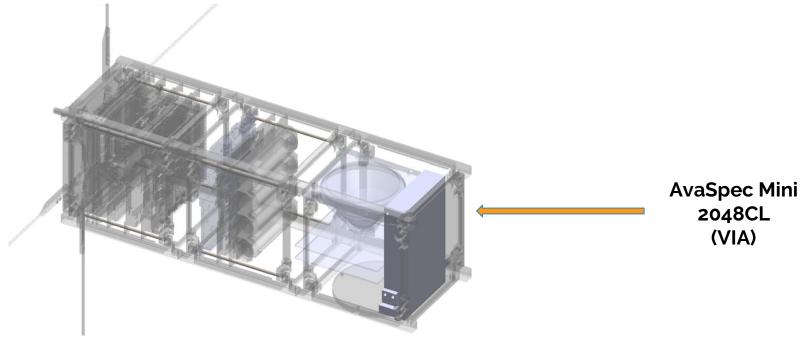
Variability In Atmosphere (VIA) Detector

Our VIA detector is a COTS CMOS spectrophotometer from AVANTES' Compact line, model AVASpec-Mini2048CL.


It has flight heritage since 2017.

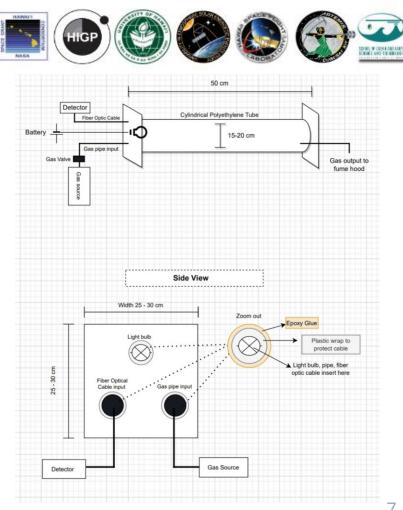
It can collect spectra within UV and Visible light ranges and is, therefore, able to measure the ozone and nitrous oxide reflectance spectra that we seek surrounding solar energetic events.

An Ocean Insight P400-1-SR fiber optic cable will allow light into the CMOS.



Variability In Atmosphere (VIA) Detector

The AvaSpec-Mini2048CL spectrometer


Variability In Atmosphere (VIA) Calibration and Testing

We are finishing the design of our calibration and testing apparatus

Apparatus will be made of a cylindrical ultra low outgassing polyethylene tube approximately 50 cm long and 15-20 cm in height

Connection points will be sealed with plastic wrap and epoxy glue

We have NO currently being shipped to us, and have recently received a 1KNT Ozone Generator from Oxidation Technologies

Solar Energetic Events (SEE) Detector

The SEE detector is a charged-particle energy spectrometer that will measure the energy levels of incident solar energetic particles.

Existing relevant instrumentation include:

- REPTile, charged particle spectrometer, MeV range
- EPT, charged particle spectrometer, keV to MeV range
- ISIS, charged particle spectrometer, keV to MeV range
- SCD, x-ray dispersive spectrometer, high intensity X-rays

However, none of these detectors are suitable for the energy ranges we are interested, nor do they follow bimodal mission operations. Therefore, the SEE detector is being developed in-house.

Solar Energetic Events (SEE) Detector

The SEE detector consists of a stack of sensors.

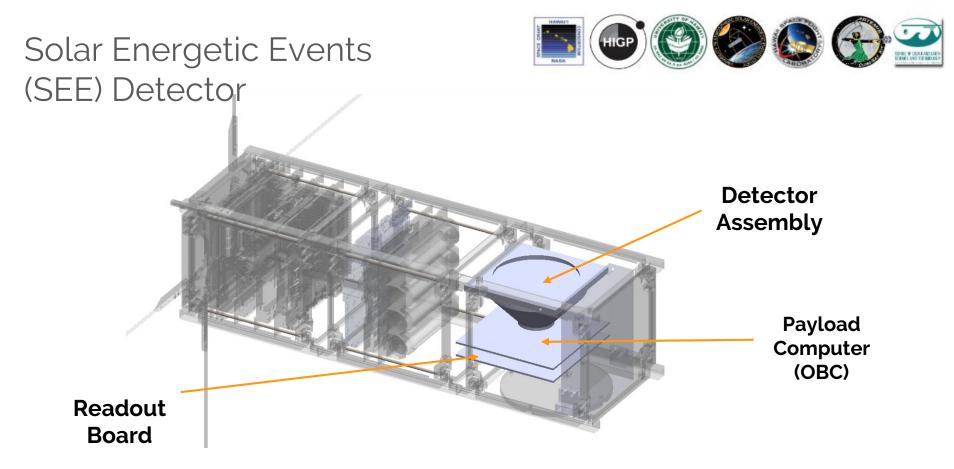
When a charged-particle strikes one of these semiconductor wafers, a pulse of current develops

• Electron-hole pair

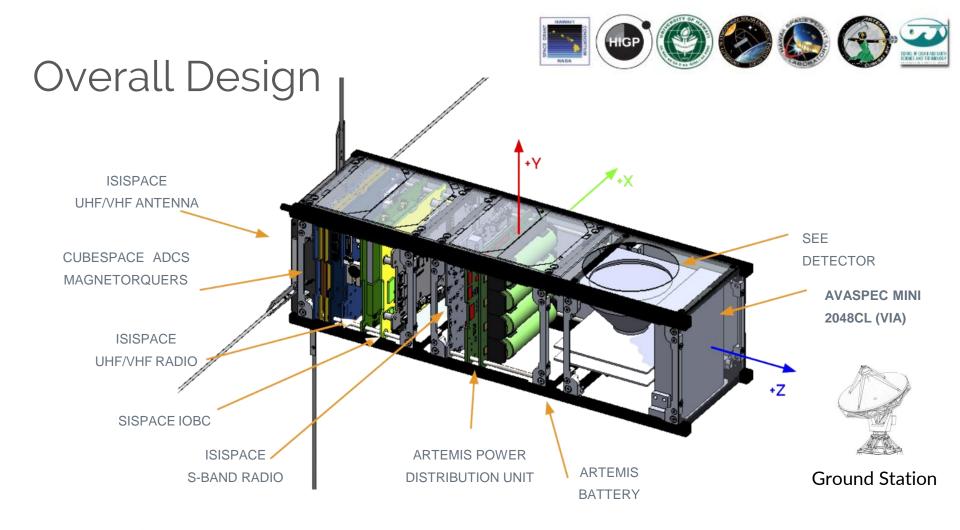
These pulses are amplified, recorded, and analyzed to determine the energy, quantity, and species of the incident-charged particles.

Adaptive voltage concept

• Improved energy resolution


Detector geometry considerations

• Hour-glass vs cylindrical



Dete	ctor	Diameter (mm)	Energy of Ionizing Radiation
Gas El Multiplie		75	Electrons of all energies
Silicon	ı (SiC)	75	Electrons of 10-300 keV
Silico	n (Si)	50	Electrons of 300-700 keV
Germani	Germanium (Ge)		Electrons of 700 - 2,000 keV
Germani	um (Ge)	75	Protons of 2-80 MeV

Together, the VIA and the SEE detectors will fit in 1U (10 x 10 x 10 cm^3)

NASA CSLI Acceptance

VIA-SEEs was 1 of 8 missions selected during the 14th round of NASA's CubeSat Launch Initiative (CSLI)

"Launch opportunities for the selectees are provided through the Educational Launch of Nanosatellites (ELaNa) missions facilitated by NASA's Launch Services Program (LSP). "

References

Heliophysics Roadmap Team, Nasa Advisory Council. Heliophysics Subcommittee, & National Aeronautics And Space Administration. (2009). Heliophysics: the solar and space physics of a new era: a recommended roadmap for science and technology 2009-2030: 2009 Heliophysics Roadmap Team report to the

NASA

Advisory Council Heliophysics Subcommittee, May 2009. National Technical Information Services.

Mitsunori Ozaki, Kazuo Shiokawa, Ryuho Kataoka, Martin Mlynczak, Larry Paxton, Martin Connors, Satoshi Yagitani, Shion Hashimoto, Yuichi Otsuka, Satoshi Nakahira, Ian Mann, "Localized Mesospheric Ozone Destruction

Corresponding to Isolated Proton Aurora Coming From Earth's Radiation Belt", Scientific Reports, 2022.

Our Dynamic Space Environment: Heliophysics Science and Technology Roadmap for 2014-2033.

Schiller, Q. G., Mahendrakumar, A., & Li, X. (2012, June). REPTile: A Miniaturized Detector for a CubeSat Mission to Measure Relativistic Particles in Near-Earth Space.

Segura, Antígona, et al. "Biosignatures from Earth-like Planets around M Dwarfs." Astrobiology, vol. 5, no. 6, 2005, pp. 706–725., https://doi.org/10.1089/ast.2005.5.706.

Van Allen, James, Louis Frank, "Radiation Around the Earth to a Radial Distance of 107,400km", Nature, Vol. 183, February 14th, 1959.

Mahalo! Questions?

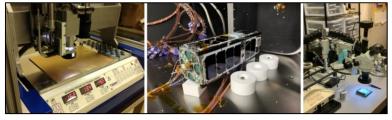
SPHERE SOLAR CSPHERE SOLAR CSP

CALIFORNIA DA

AGRISSIN

Dr. Peter Englert Dr. Frances Zhu Dr. Miguel Nunes Dr. Robert Wright Team VIA-SEEs Amber Imai-Hong Hawaii Space Grant Consortium Hawaii Space Flight Laboratory

Integration & Test Equipment



Intivac Thermal Vacuum Chamber 1.6 m I.D. x 2.25 m long, 10⁻⁸ Torr

Attitude Control Test Facility ADCS testing for 1-100 kg satellites

Spacecraft Avionics Development Equipment/Facilities Machine Shop, PCB prototyping and repair equipment, etc.

Class 10,000 (ISO 7) cleanroom Located in the basement of the POST building.

Lesker Thermal Vacuum Chamber 0.6 m I.D. x 1.2m long, 10⁻⁶ Torr

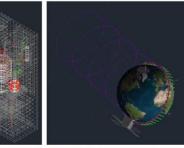
Vibration and Shock Table Tests objects 1.2 x 1.2m 5-2200 Hz to 7000 kgf; 14000 kgf shock

Hawaii Space Flight Laboratory. Approved for Public Release.

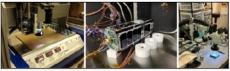
Overview of Capabilities

Intivac Thermal Vacuum Chamber 1.6 m I.D. x 2.25 m long, 10³ Torr

Vibration and Shock Table Tests objects 1.2 x 1.2m 5-2200 Hz to 7000 kgf; 14000 kgf shock


Attitude Control Test Facility ADCS testing for 1-100 kg satellites Nagnetic Field, Sun, Nadir, GPS and Star tracker stimulators

Spin Balancer


HSFL engineers working on HiakaSat-1

Thermal and orbital modelling capabilities

Class 10,000 cleanroom Located in the basement of the POST building.

Spacecraft Avionics Development Equipment/Facilities Machine Shop, PCB prototyping and repair equipment, etc.

HSFL UHF/VHF/S-band ground receiving stations

HSFL led the development of the ORS-4 Super-Strypi launch vehicle

HSFL Ground Stations

Honolulu Community College X-band

Kauai Community College UHF/VHF/S-band

Affiliated Ground Stations: Alaska Space Facility (S-band) Surrey Space Centre/SSTL (UHF/VHF/S-band)

UH Manoa – NRL MC3 GS UHF/S-band

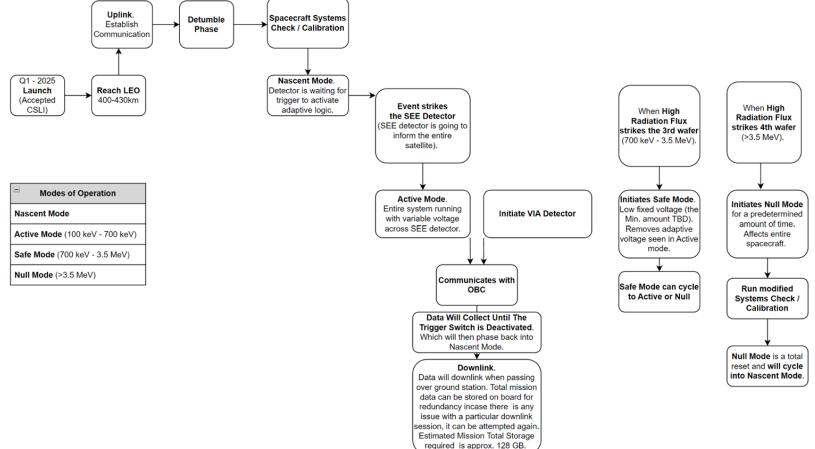
Hawaii Space Flight Laboratory. Approved for Public Release.

Variability In Atmosphere (VIA) Gantt Chart

GANTT CHART FOR VIA

	TASK	START	END	END 2022					2023																		
_	IASK	DATE	DATE	J	Α	s	0	N	D	J	F	М	Α	М	J	J	A	s	0	Ν	D						
2 0	Spectrometer Trade Study	7/11/2022	8/20/2022						Τ																		
2 2	Purchase Spectrometer & Fiber Optic Cable	8/20/2022	8/15/2022																								
	Connect Spectrometer to OBC	1/9/2023	1/23/2022																								
S 2 3	Write Test Code Via Python; Serial Communication	1/24/2023	2/24/2023																								
	Simulated Atmosphere Tests	2/25/2023	5/12/2023																								
F	Develop Testbed	8/28/2023	9/12/2023						Τ																		
A L	Thermal Vacuum Tests	9/13/2023	9/27/2023																			_					
L 2	Vibration Chamber Tests	9/28/2023	10/31/2023																				Su	mmer	& Fa	1 202	22
02	Testing with Radiation Source	11/1/2023	11/20/2023																					Sprin	ng 20	23	
3	Instrument Flight Validation	11/21/2023	12/16/2023																					Fal	1 2023	3	

Solar Energetic Events (SEES) Detector


GANTT CHART FOR SEE

	TASK	START	2022						2023												
	IASK	DATE	DATE	J	Α	s	0	N	D	J	F	М	Α	М	J	J	Α	s	0	N	D
2 0	Selection of Detector Prototype	8/20/2023	10/15/2023						Ι												
2 2	Completion of Detector of CAD Model	10/15/2023	1/31/2023																		
	Completion of Detector Design	1/15/2023	3/15/2023																		
S	Experimental Testing of Components	2/15/2023	5/15/2023																		
3	Analysis using Geant 4 Simulations	3/15/2023	7/15/2023																		
	Purchase Materials and Electronics	4/15/2023	8/15/2023																		
F	Assembly of Components	7/1/2023	8/15/2023																		
A L	Detector Calibration	8/15/2023	9/30/2023																		
L 2 0 2 3	Vibration Chamber Tests	9/15/2023	10/15/2023																		
	Testing with Radiation Source	10/1/2023	11/30/2023																		
	Instrument Flight Validation	11/15/2023	12/16/2023																		

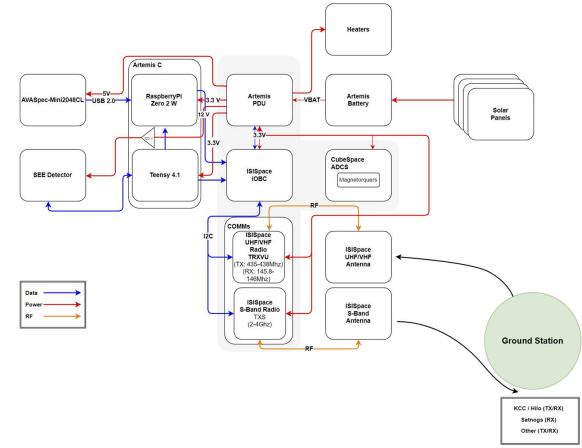
Concept of Operations

Mass Budget

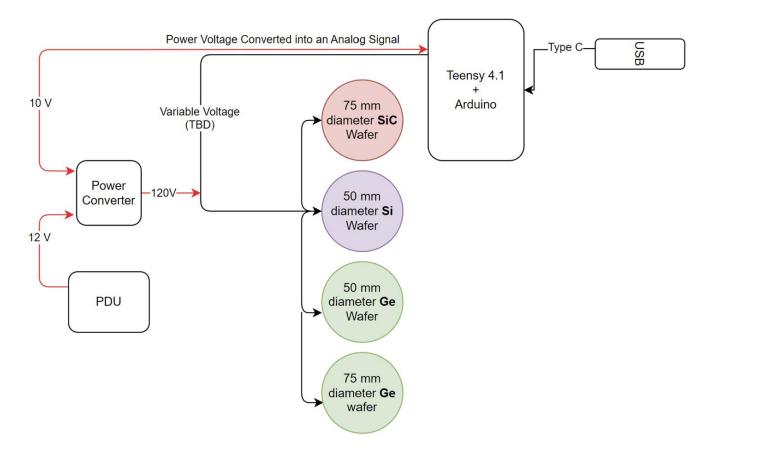
Subsystem	Component	Unit Mass (g)
Payload	SEE Detector	1000
Fayload	AvaSpec-Mini2048CL	175
	ISISpace iOBC	100
	Artemis Battery Pack	294
	Artemis PDU	70
	CubeSpace ADCS Magnetic	225
	ISISpace Solar Panels	600
Spacecraft	ISISpace 3U Structure	304.3
	ISISpace VHF/UHF Transceiver	75
	ISISpace VHF/UHF Antenna	100
	ISISpace S-Band Transmitter	120
	ISISpace S-Band Antenna	50
	Sub Total (g)	3113.3
	Harnessing (10%)	311.33
	Total (g)	3424.63
	Remaining Mass (g), 4.8 kg max	1375.37

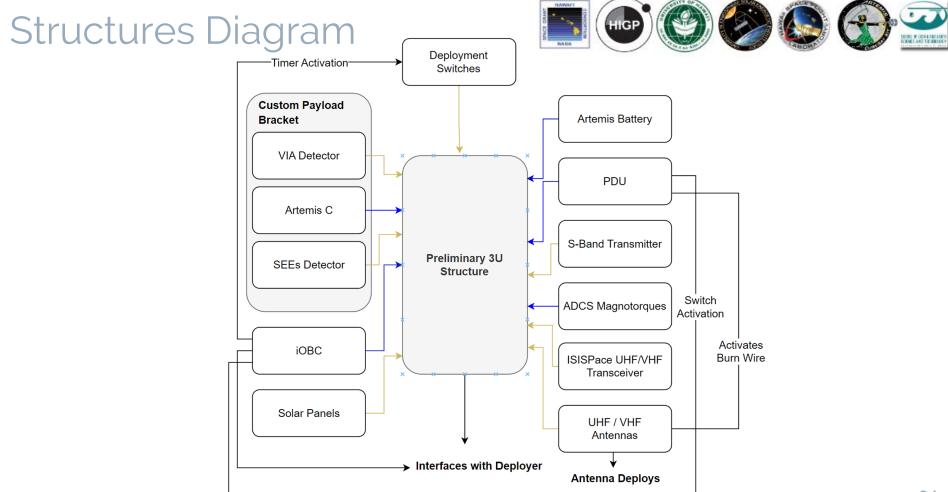
Power Allocation

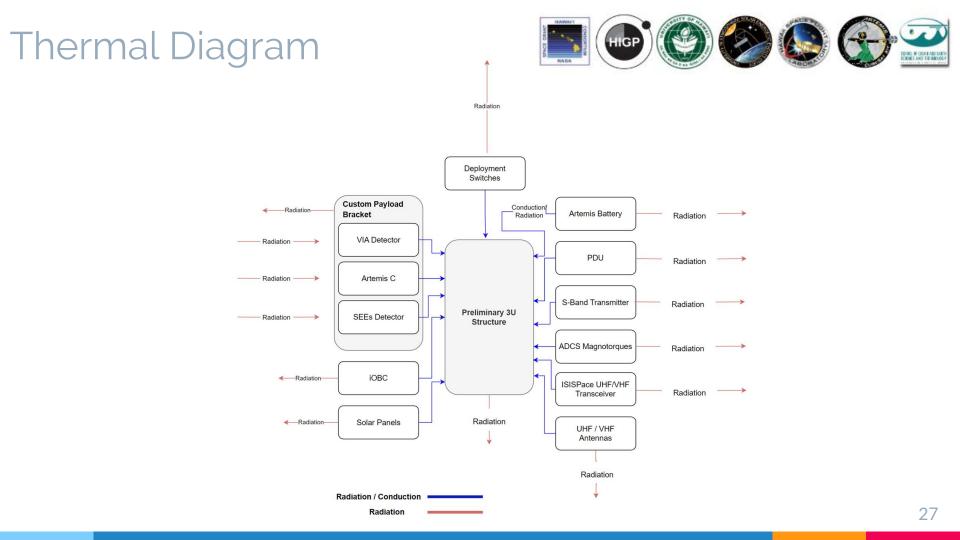
Subsystem	Component	Part Name/Datasheet	By Subsystem	Peak Power Usage	Duration per Orbit	Average Power Consumption per Orbit (Wh)	% of Power Budget
	VIA	VIA		1.25	0.25	0.313	1.55%
Payload	SEE	SEE	4.66%	2.5	0.25	0.625	3.11%
	Transmitter (TX)	ISISpace S Band Transmitter		13	1.07	13.867	68.99%
	Reciever (RX)	ISISpace UHF/VHF Transceiver		4	0.65	2.600	12.94%
COMMs	Deployment	ISISpace UHF/VHF Antenna Deployer	81.94%	15	0.00	0.001	0.00%
	ISC	Teensy 4.1		2.3	0.58	1.342	6.68%
	ISC	Raspberry Pi Zero		0.4917	0.87	0.426	2.12%
OBC	OBC	ISIS OBC	9.29%	0.4	0.25	0.100	0.50%
	Gyroscope			0.0052	0.33	0.002	0.01%
	Magnetometer			0	0.33	0.000	0.00%
	Accelerometer	BMX160		0	0.33	0.000	0.00%
	GPS	<u>S1216F8-BD</u>		0	0.33	0.000	0.00%
ADCS	CubeSpace (Magn	<u>Gen 1</u>	2.64%	1.585	0.33	0.528	2.63%
	Heater	KHLVA-0502/(*)		5	0.00	0.000	0.00%
Thermal	Thermal Sensors x	TMP36F	0.02%	0.0035	1.07	0.004	0.02%
	Battery Board	PyCubed		0	0.00	0.000	0.00%
EPS	Distribution Unit	Artemis Design	1.45%	0.5	0.58	0.292	1.45%
						20.098	100.00%
		Mode	Duration [hr]				
		Nominal	0.5333333333				
		Pointing	0.25				
		Data Collect	0.25				
		Data Received	0.01666666667				
		Data Transmitted	0.06666666667				


Power Usage by Mode (Subsys. On/Off)

	Part	s			-			Power	Usage by Mo	ode (W)					
Subsystem	Component	Part Name/Datasheet	Initial Startup	Restart	Data Collect	Data Processing	Data Transmit	Data Received	Nascent	Active	Safe	Null	Thermal Emergency (Hot)	Thermal Emergency (Cold)	Battery Emergency
	VIA	VIA	Off	Off	On	Off	Off	Off	Off	On	On	Off	Off	Off	Off
Payload	SEES	SEE	Off	Off	On	On	On	On	On	On	On	Off	Off	Off	Off
	Transmitter (TX)	ISISpace S Band Transmitter	Off	Off	On	Off	On	Off	Off	Off	Off	Off	Off	Off	Off
	Reciever (RX)	ISISpace UHF/VHF Transceiver	On	Off	On	Off	Off	On	On	On	On	Off	Off	Off	Off
COMMs	Deployment	UHF/VHF Antenna Deployer	On	Off	Off	Off	Off	Off	Off	Off	Off	Off	Off	Off	Off
	ISC	Teensy 4.1	Off	Off	On	On	Off	Off	Off	On	On	Off	Off	Off	Off
	ISC	Raspberry Pi Zero	Off	Off	On	On	Off	Off	Off	On	On	Off	Off	Off	Off
OBC	OBC	ISIS OBC	On	Off	On	On	On	On	On	On	On	Off	Off	On	Off
	Gyroscope Magnetometer Accelerometer	DMV100	Off	Off	On	On	On	On	On	On	On	Off	Off Off Off	Off Off Off	Off Off Off
		BMX160 S1216F8-BD	Off	Off	On	On	On	On	On	On	On	Off	Off	Off	Off
ADCS		<u>Gen 1</u>	Off	Off	On	On	On	On	On	On	On	Off	Off	Off	Off
	Heater	KHLVA-0502/(*)	Off	Off	Off	Off	Off	Off	Off	Off	Off	Off	Off	On	Off
Thermal	Thermal Sensors x5	TMP36F	Off	Off	On	On	On	On	On	On	On	Off	On	On	Off
	Battery Board	PyCubed	On	Off	On	On	On	On	On	On	On	Off	On	On	On
EPS	Distribution Unit	Artemis Design	On	Off	On	On	On	On	On	On	On	Off	On	On	On


Spacecraft System Diagram





SEEs Detector Diagram

