Payload Design of RHOK-SAT, a 1U CubeSat to Characterize Perovskites in Low Earth Orbit

RHOK®SAT

Olivia Kaufmann Benjamin Wilson 04/25/2023

Introduction

- 1U CubeSat projected for March 2024 launch
- Being done with no engineering department
- Launching new photovoltaic (PV) technology into space
- Custom electromechanical assembly to test the PV cells

Mission Description

Two Missions

- 1. Educational
- 2. Scientific
 - 36 perovskites
 - 1 control CIGS
- ISS Orbit (400-700 km altitude)
 - 9 18-month mission

Characterizing a Solar Cell

- Assess performance under illumination
- \bullet Sweep from V_{OC} to I_{SC}
- Important parameters:
 - V_{oc}
 - I_{SC}
 - P_{MP}
 - Efficiency

https://www.pveducation.org/pvcdrom/solar-cell-operation/iv-curve

Experimental PV Cells - Perovskites

- 6 distinct pixels per slide
- Potential deep space applications
- Performance can be recovered when cells are stored in a dark location
- Sensitive to moisture
- Premature degradation occurs when illuminated but not measured

Aerospace Measurement Unit (AMU)

- Passive measurement device that
 - uses a variable resistive
 - resistance starts at a maximum to measure V_{OC} and is decreased toward I_{SC} .
- AMU relies on the voltage generated by the cell
 - Sweeps can only occur when the cell is illuminated.

Sun Sensor

On-Orbit Procedure

Sun angle measurement determines threshold is met

Temperature measurements of all cells

IV sweeps of all pixels and CIGS

Temperature measurements of all cells

Sun angle measurement

Payload Mechanical Structure

Exploded View

Electrical Design

Conclusion

- Currently in late stages of design
- Scientific mission: testing novel PV cell technology
- All being done without an engineering department

Acknowledgements

- Dr. Charles Robertson, NASA CSLI Program, Gene Haas Foundation, Mac Armour Fellowship, Society of Physics Students
- Dr. Bentley Burnham, Dr. Brent Hoffmeister, Dr. Ann Viano, Prof. Lanre Obadina, Dr. Phillip Kirlin
- Colin Mann, Brad Hensley
- University of Oklahoma Photovoltaic Materials and Devices Group

