Cellular hibernation enables advanced biological research on CubeSat missions

CHRISTINE MEHNER M.D., PH.D.

ASSISTANT PROFESSOR OF BIOMEDICAL ENGINEERING

DYLAN ZINN AND TUSHAR PATEL

Why do should we study biology in space?

- Improve understanding of how spaceflight affects living systems
- how long people can survive the extreme conditions
- how fast they can adapt to the Earth's environment after returning

Cells

What do we study when talking about human biology?

DNA damage

Mitochondrial dysfunction

Oxidative stress

Shifts in the microbiome

How organisms repair cellular damage and protect themselves from infection and disease?

Gene regulation

Protein expression

https://arstechnica.com/science/2022/11/the-mysteries-of-the-astronaut-biome/?comments=1&comments-page=1 https://www.samuelmaddockhealth.com/functional-medicine/how-to-support-your-mitochondria-with-<u>functional-medicine</u> https://www.nasa.gov/exploration/humanresearch/multimedia/images/hrpg_img_09.html https://www.northraleighperio.com/blog-news/how-to-fight-oxidative-stress/

Current state | Challenges

Space:

- Limited knowledge of impact of deep space on humans
- Limited ability to adequately maintain human cells autonomously
 - Cells require temperature control, oxygen, and nutrients

Earth:

• established cell culturing methods and protocols

Goal:

 provide the basis for a controlled environment that increases science return to study disease development and risk mitigation

What are key elements to studying human cells?

• Cells that continue to grow

Day 0 - Plate

Day 2-3 - Feed

Day 4-5 - Subculture (split) - (80%)

Attached cells

Ready to split

https://www.genengnews.com/magazine-issues/september-15-2015-vol-35-no-16/feng-shui-basics-for-3d-cell-culture/ https://link.springer.com/chapter/10.1007/978-3-030-83696-2_3

What is the challenge when studying human cells in space?

What is the challenge when studying human cells in space?

Growth and inadequate opportunity to split

Example for an ISS mission:

T-3 cells are plated T-2 handover and integration T+2 arrival on ISS and change of nutrients (**total 5d**) T+7-10 experimental data gathering

What is the challenge when studying human cells in space?

Growth and inadequate opportunity to split

>5d >10d

Day5

Dayl

Current approach:

Challenge: Suboptimal cell density for maintenance of cell-cell contacts

During transport: Feeding Overgrown on arrival

https://www.nature.com/articles/s41526-020-0106-z/figures/1 https://toppng.com/free-image/nasa-iss-2011-PNG-free-PNG-Images_67434

Solution

Create the state of low metabolic activity or hibernation to reduce: nutrient need cell growth toxin production

Special considerations: Possibility of keeping single constant temperature No fluid exchange needed On-demand "waking" of the cells for in orbit experiments

Identification of a hibernation solution:

Design

Evaluation – cell morphology after 21 days in Cellnap

Human Hepatocytes

Evaluation

Human Hepatocytes

https://www.aatbio.com/resources/application-notes/mtt-assay \https://www.promega.com/products/cell-health-assays/cell-viability-and-cytotoxicity-assays/ldh-glo-cytotoxicity-assay/?catNum=J2380#protocols

Putting things into context – addressing the Challenges

- Tested solution on over 5 different cells types
- Can hibernate cells successfully for >10d
- Recover fully after 24-48h and ready for experiment

Practical approach for an ISS mission CubeSat deployment:

T-3 cells are plated T-2 cells are place into Cellnap - handover and integration T+2 arrival on ISS and "waking" T+7-10 experimental data gathering

Practical approach for lunar and CubeSat missions: T-3 cells are plated T-2 cells are place into Cellnap handover and integration T+10 arrival on the lunar surface and "waking" T+17-20 experimental data gathering

Possibility for on-demand staggered experiment starts and repeat experiments

Going further...

- Continue to optimize and test Cellnap (potentially modify for longer duration)
- More extensive cell analysis including mitochondrial health, gene analysis, proteomics
- Terrestrial interest

Thank you!

- Tushar Patel
- Dylan Zinn
- Irene Yan
- Julia Driscoll
- Piyushkumar Gondaliya
- Adil Ali
- Lydia Mercado
- Matthew Ledenko

Funding sources:

Mayo Clinic NASA Flight Opportunities MC Office for Translation to Practice

