



## Programmable Interface Board for Higher CubeSat Form Factor and Complex Mission Payload

### **2021 CUBESAT DEVELOPERS WORKSHOP**

Marloun Sejera\*, Takashi Yamauchi, Yukihisa Otani, Mengu Cho La SEINE, Kyushu Institute of Technology (Kyutech), Japan



Acronym for Joint Global Multi-Nation BIRDS Satellite Project
Targets non-space fairing countries
Build, test, launch and operate 1U CubeSats in two years

### BIRDS-1

Japan Ghana\* Mongolia\* Nigeria Bangladesh\*



BIRDS-2

**Kyutech BIRDS Project** 

Japan Bhutan\* Malaysia Philippines BISH

BIRDS-3

Japan Nepal\* Sri Lanka\* BIRDS-4

BIRDS-4

Japan Paraguay\* Philippines Japan Uganda\*

Zimbabwe\*

**BIRDS-5** 

\*country's first satellite











Implemented backplane approach

- reduce use of harness
- smaller connectors
- easy to integrate and disassemble



BIRDS CubeSat internal view

# **K** BIRDS Configurable Backplane





- 6x 50-pin board connectors (C101-C106)
- 4x 2-pin deployment switch connectors (SW1-SW4)
- 5x 12-pin panel connectors (SP1-SP5)
- 1x JTAG for CPLD programming





□ Routing between system bus and mission payload is done by re-programming CPLD.



\*Complex Programmable Logic Device





More launch opportunities on bigger CubeSats

Need to demonstrate the scalability of programmable interface board



Source: <u>https://www.nanosats.eu/img/fig/Nanosats\_years\_types\_2021-01-01.png</u>



- 3 sections: 3U Camera payload, 1U payload, and 2U main bus
- Sections are inter-connected through backplane







### **6U CubeSat Backplane**



- 12x 50-pin board connectors (6x main bus + 6x payload)
- 6x 4-pin board connectors

- 3x 2-pin deployment switch connectors
- 3x panel connectors (2x 12-pin, 1x 25-pin)
- 2x JTAG for CPLD programming









| FROM  |     |                                         | то    |     |                                         |  |  |  |
|-------|-----|-----------------------------------------|-------|-----|-----------------------------------------|--|--|--|
| Board | Pin | Description                             | Board | Pin | Description                             |  |  |  |
| OBC   | 37  | OBC-ADB UART_1 (MainPIC_to_RelayPIC)    | ADB   | 11  | OBC-ADB UART_1 (MainPIC_to_RelayPIC)    |  |  |  |
| ADB   | 12  | OBC-ADB UART_1 (RelayPIC_to_MainPIC)    | OBC   | 38  | OBC-ADB UART_1 (RelayPIC_to_MainPIC)    |  |  |  |
| ADB   | 21  | ADB-EPS1 DIO (RelayPIC_to_MainBC)       | EPS   | 21  | ADB-EPS1 DIO (RelayPIC_to_MainBC)       |  |  |  |
| EPS   | 22  | EPS1-ADB BAT_VOLTAGE                    | ADB   | 22  | EPS1-ADB BAT_VOLTAGE                    |  |  |  |
| OBC   | 42  | OBC-ADB DIO (ONOFF MainPIC_to_RelayPIC) | ADB   | 41  | OBC-ADB DIO (ONOFF MainPIC_to_RelayPIC) |  |  |  |
| ADCS  | 38  | ADCS-ADB SS_MAG (ADCS_to_ADB)           | ADB   | 43  | ADCS-ADB SS_MAG (ADCS_to_ADB)           |  |  |  |
| ADCS  | 39  | ADCS-ADB MOSI_MAG (ADCS_to_ADB)         | ADB   | 44  | ADCS-ADB MOSI_MAG (ADCS_to_ADB)         |  |  |  |
| ADB   | 45  | ADCS-ADB MISO_MAG (ADB_to_ADCS)         | ADCS  | 40  | ADCS-ADB MISO_MAG (ADB_to_ADCS)         |  |  |  |
| ADCS  | 41  | ADCS-ADB SCLK_MAG (ADCS_to_ADB)         | ADB   | 46  | ADCS-ADB SCLK_MAG (ADCS_to_ADB)         |  |  |  |
| ADCS  | 42  | ADCS-ADB DRDY_MAG (ADCS_to_ADB)         | ADB   | 47  | ADCS-ADB DRDY_MAG (ADCS_to_ADB)         |  |  |  |
| ADCS  | 43  | ADCS-ADB Reset_MAG (ADCS_to_ADB)        | ADB   | 48  | ADCS-ADB Reset_MAG (ADCS_to_ADB)        |  |  |  |
| OBC   | 10  | OBC-ADCS DIO (ONOFF MainPIC_to_ADCS)    | ADCS  | 10  | OBC-ADCS DIO (ONOFF MainPIC_to_ADCS)    |  |  |  |
| OBC   | 27  | OBC-ADCS UART (MainPic_to_ADCS)         | ADCS  | 27  | OBC-ADCS UART (MainPic_to_ADCS)         |  |  |  |
| ADCS  | 28  | OBC-ADCS UART (ADCS_to_MainPic)         | OBC   | 28  | OBC-ADCS UART (ADCS_to_MainPic)         |  |  |  |
| ADCS  | 31  | OBC-ADCS SPI_CS (ADCS_to_FM2)           | OBC   | 31  | OBC-ADCS SPI_CS (ADCS_to_FM2)           |  |  |  |
| ADCS  | 32  | OBC-ADCS SPI _MOSI (ADCS_to_FM2)        | OBC   | 32  | OBC-ADCS SPI _MOSI (ADCS_to_FM2)        |  |  |  |
| OBC   | 33  | OBC-ADCS SPI_MISO (FM2_to_ADCS)         | ADCS  | 33  | OBC-ADCS SPI_MISO (FM2_to_ADCS)         |  |  |  |
| ADCS  | 34  | OBC-ADCS SPI_SCK (ADCS_to_FM2)          | OBC   | 34  | OBC-ADCS SPI_SCK (ADCS_to_FM2)          |  |  |  |
| OBC   | 11  | OBC-CBAND UART_1 (MainPIC_to_CBAND)     | CBAND | 41  | OBC-CBAND UART_1 (MainPIC_to_CBAND)     |  |  |  |
| CBAND | 42  | OBC-CBAND UART_1 (CBAND_to_MainPIC)     | OBC   | 12  | OBC-CBAND UART_1 (CBAND_to_MainPIC)     |  |  |  |
| CBAND | 40  | OBC-CBAND RTS (CBAND_to_ComPIC)         | OBC   | 40  | OBC-CBAND RTS (CBAND_to_ComPIC)         |  |  |  |
| OBC   | 41  | OBC-CBAND UART_2 (ComPIC_to_CBAND)      | CBAND | 39  | OBC-CBAND UART_2 (ComPIC_to_CBAND)      |  |  |  |
| OBC   | 43  | OBC-CBAND CW (ComPIC_to_CBAND)          | CBAND | 46  | OBC-CBAND CW (ComPIC_to_CBAND)          |  |  |  |

22 pairs of connections (UART, SPI and DIO) routed through main bus CPLD
1u payload has its dedicated CPLD for routing digital signals

# **CPLD code and verification**





- Voltage/ Signal follower using VHDL code.
- Input-output signal pair was verified using logic analyzer.

La SEINE





- Worst hot: +60°C
- Worst cold: -15°C
- Cycles: 2









#### **Random Vibration QT Profile**

| Envelope (QT)  |             |  |  |  |  |
|----------------|-------------|--|--|--|--|
| Freq. (Hz)     | PSD (g2/Hz) |  |  |  |  |
| 20             | 0.04        |  |  |  |  |
| 50             | 0.04        |  |  |  |  |
| 120            | 0.062       |  |  |  |  |
| 230            | 0.062       |  |  |  |  |
| 1000           | 0.009       |  |  |  |  |
| 2000           | 0.0026      |  |  |  |  |
| Overall (Grms) | 5.77        |  |  |  |  |
| Duration (s)   | 120         |  |  |  |  |

#### **Sine Burst Vibration QT**

| SINE BURST QT            |            |                 |                  |  |  |  |  |  |
|--------------------------|------------|-----------------|------------------|--|--|--|--|--|
| Direction                | Freq. [Hz] | QT              |                  |  |  |  |  |  |
| Direction                |            | Number of waves | Acceleration [G] |  |  |  |  |  |
| Vertical axis (Y)        | 10~40      |                 | 11.25            |  |  |  |  |  |
|                          | 10~40      | 10 or more      | 11.25            |  |  |  |  |  |
| Horizontal axis $(X, Z)$ |            |                 | 11.25            |  |  |  |  |  |









- A backplane was designed to demonstrate the scalability of programmable interface board.
- □ It is used in a 6U CubeSat which houses a 3U camera payload, 2U main bus and a 1U payload.
- □ Complex programmable logic device (CPLD) ICs were used to route digital lines within the backplane. CPLD has flight heritage from BIRDS project.
- □ The satellite passed space environment tests (i.e. TVT and vibration test)
- □ The satellite is targeted to launch by end of the year.

# **Platform-payload interface**





\*Complex Programmable Logic Device







Tumenjargal, T., Kim, S., Masui, H., Cho, M., CubeSat bus interface with Complex Programmable Logic Device, Acta Astronautica Vol. 160, 2019, pp. 331-342



Figure 4: Types of digital communication (CubeSat developers)

Cho, M., et al., CubeSat Electrical Interface Standardization for Faster Delivery and More Mission Success, Small Satellite Conference 2020

Routing between system bus and mission payload is done by re-programming CPLD.
Digital communication between bus and payload are the same.
Digital communication is limited to UART and SPI.





To design a CubeSat interface that is

- able to route digital connections between platform (bus) and mission payload
- capable of handling communication protocols needed by satellite developers
- capable to bridge platform (bus) and mission payload which use different communication protocol



<sup>\*</sup>A and B are communication protocols







MachXO – Interface Bridging MachXO family of non-volatile, infinitely reconfigurable PLDs designed for applications traditionally implemented using CPLDs or low-capacity FPGAs.



MachXO2 – Flexible Interface Bridging FPGA

MachXO2 FPGA device for quickly implementing system control functions for routers, base stations, servers, storage, industrial and medical applications.





#### I<sup>2</sup>C Slave to SPI Master Bridge

Reference Design RD1094

#### December 2010

#### Introduction

I<sup>2</sup>C and SPI are the two widely-used bus protocols in today's embedded systems. The I<sup>2</sup>C bus has a minimum pin count requirement and therefore a smaller footprint on the board. The SPI bus provides a synchronized serial link with performance in MHz range. As embedded systems are required to support an increasing number of protocols and interfaces, bridge designs targeting popular protocols provide solutions to reduce development time and cost. This reference design implements an I<sup>2</sup>C slave to SPI master bridge. It serves as an interface between the standard I<sup>2</sup>C bus of a microcontroller and a SPI bus. This allows the microcontroller to communicate directly with the SPI bus through its I<sup>2</sup>C bus.







Tumenjargal, T., Kim, S., Masui, H., Cho, M., CubeSat bus interface with Complex Programmable Logic Device, Acta Astronautica Vol. 160, 2019, pp. 331-342



□ FPGA can replace CPLD to work as signal follower, and a bridge.



La SEINE