

Cobalt Optical Crosslink Transceiver for SWaP-constrained Missions

Ryan Kingsbury

2021 CubeSat Developers Workshop

- Formed 2018
- Our focus:

low-SWaP, cost-effective, mass-produced RF & optical comm solutions

- Core optical technology: self-alignment with differential tracking of TX and RX signals
- Funding strategy: private investment, SBIRs, strategic partnerships

TRL6, flying in late 2021

Why crosslinks?

- Communications Infrastructure
 - SpaceX Starlink
 - Amazon Kuiper
- Science applications
 - Distributed apertures: precision OD, timing
 - Swarm concepts
- Defense applications
 - SDA's Proliferated LEO vision
 - DARPA Blackjack
- High rate radio crosslinks aren't viable
 - Low data rates due to antenna restrictions
 - Limited spectrum (S-band and Ku-band)

Lasercom 101

- Fundamentally a pointing problem
 - Beamwidths of 10 urad (2 arcsec) are common
 - Pointing requirement is a small fraction of the beamwidth
- Key components:
 - Power-efficient light source
 - Low-noise, high-bandwidth comms detector
 - Acquisition/tracking detectors
 - Free-space optics (telescope, pointing)
- Common Design Trades
 - Wavelength: component availability, performance
 - Aperture Size / Configuration
 - Platform vibration ("jitter"): power to compensate

Optical Downlinks vs Crosslinks

Downlinks

- Usually asymmetric
 - Fast downlink
 - Slow (or no) uplink

• Easier:

- Ground apertures can be large
- No power constraints on ground
- Shorter path lengths (< 2000 km)

• Harder:

- Atmosphere
- Clouds
- Beacon safety/licensing

Crosslinks

- Symmetric
 - full-duplex operation
- Easier:
 - No atmosphere, clouds

• Harder:

- Path lengths to 4000 km for LEO-LEO
- Limited aperture size
- Satellite power constraints
- RX/TX co-alignment
- Terminal "handedness"

Crosslinks are more challenging. But a crosslink terminal can be used for downlink.

Crosslink

Wavelength Trades: Components

Component	1550 nm (IR, fiber telecom operates here)	450-800 nm (visible, "silicon friendly")
Transmitter Type	Telecom modulator (100 Gbps) + EDFA (<10% efficiency)	Directly modulated diode laser, (>30% efficiency)
Communications Detector	InGaAs APD (noisy) OR optical preamp (power)	Si APD (less noisy) OR Silicon photomultiplier
Acquisition & Tracking Sensor	Quad-cell, SWIR camera (\$\$\$)	Silicon camera (cheap, fast, good!)

1550 nm is not the power-efficient choice for moderate data rate (~1 Gbps) crosslink systems

Aperture Trades: Gain & Topology

- Two functions:
 - Free-space photons \rightarrow detector
 - Laser \rightarrow free-space

- Aperture Gain/Directivity
 - Function of diameter (*D*) and wavelength (λ)
 - 850 nm from 11 mm aperture \rightarrow 92 dBi (!)
 - Note that large apertures become expensive in terms of mass. $M \propto D^3$
- Space optics are hard
 - We want diffraction limited performance
 - Thermal defocus
 - Launch loads
 - Radiation darkening

Dual Aperture Optics Good TX/RX isolation Co-alignment is hard Mass inefficiency due to second aperture Easer TX Aperture RX Aperture

Single aperture designs offer mass savings and reduced alignment complexity.

Coarse steering:

- Establishes pointing to within the range of the fine steering system
- Approaches
 - Body-pointing (best for a CubeSat)
 - Gimbal (move the whole terminal)
 - Beam director (steer a collimated beam)

Fine steering:

- Achieve sub-beamwidth pointing accuracy
- Commonly used to compensate for vibrations from reaction wheels and other mechanisms
 - Better yet: address jitter at the source!
- Requires knowledge of pointing error
- Fast-steering mirrors: MEMS, voice coil, etc.

To close pointing control loops, we need a measurement of system pointing error.

For crosslinks: relative error between TX and RX signals is the key measurement.

Blue Cubed: Cobalt Optical Transceiver

Industry Leader in Size, Weight and Power Terminal per Mbps

Blue Cubed: Modular Approach

Blue Cubed

- Optical crosslinks are feasible on SWaP-constrained CubeSats today!
- Visible and NIR wavelengths are CubeSat-friendly
 - High efficiency diode lasers
 - Silicon detectors: low cost, power efficient
- Blue Cubed is developing lasercom products tailored for SWaP-constrained applications
 - Differential tracking performance validated
 - Full environmental qual (TRL6) late 2021

Contact Us: info@bluecubed.net www.bluecubed.net

