

CUBESAT ARCHITECTURE FOR RELIABLE ON-ORBIT COTS PARTS USE

Space Micro Inc. Cal Poly CubeSat Developers Workshop April 2021

Dr. Dave Hansen, Dr. Bert Vermeire, Michael Jacox, Dave Strobel www.spacemicro.com

Outline

<u>The Threat</u> – Space Radiation Effects

- The Environment
- Satellites do fail in orbit

The Response

- Rad Hard Parts vs. COTS
- Hardening Techniques

<u>The Solutions</u> - Case Studies in Radiation Hardening

- The CubeSat Space Processor (CSP)
- Alternative approaches

September 18, 1941

With the score tied 0-0 in the 4th inning the broadcast was lost for 15 minutes ...

...when the broadcast resumed, the Pirates had 4 runs.

Irate Brooklyn fans found "little satisfaction" with the explanation that <u>sunspots</u> were to blame

https://eos.org/features/the-geomagnetic-blitz-of-september-1941

Radiation Induced Failures

Telstar I (1962) – First Satellite to fail due to radiation (Total Dose)

Hubble Space Telescope (1990) - Six status monitors fail in the South Atlantic Anomaly

Meteosat (2006) – Satellite enters safe mode after single event upset

Radiation has been an issue for satellites since the beginning of the Space Age

CubeSat Failure Rates

2019 Data from Michael Swartwout (St. Louis University)

CubeSat Mission Status, 2000-present, No Constellations,

CubeSats: historically have very high failure rates; Need cost effective radiation solution.

https://sites.google.com/a/slu.edu/swartwout/

SOHO Satellite

- > EIT 195Å Imager
- > Flare
 - "White" Flash
- Coronal Mass Ejection
 - "Scratches" on the image
 - Due to ejected ions (mostly protons)

Solar protons upset the imager following a solar flare

Orbit and Radiation

The Earth's Electron Radiation Belts

Space Weather, Volume: 11, Issue: 4, Pages: 169-186, First published: 22 January 2013, DOI: (10.1002/swe.20023)

Orbit Severity

Radiation Type and Severity Changes with Orbit

Petersen 1998 IEEE Trans. Nucl. Science

How Bad is it?

LEO, MEO – "Mostly" Protons = Lightly Ionizing GEO – Heavy Ions = Highly Ionizing

Petersen 1998 IEEE Trans. Nucl. Science

Part Selection

Part Class	Quality / Reliability	Radiation	Cost	Capability	Availability
QMLV – Space Grade	Screen + Test	Rad Hard	Expensive	Old Tech	Later
QMLQ – MIL Grade	Quality	Ra		Ģ	Þ
Enhanced products	/ Relia	diation	Cost	apabili	ailabili
Automotive	bility			¢.	Ś
Commercial	Low FIT	Good Luck!	Cheap	Modern	Now

Architecture can Mitigate Risks of Lower Grade Parts

Baumann SEE Symposium 2016

SPACE MICRO The Cubesat Space Processor

Cubesat Space Processor (CSP)

- Single board computer
 - Xilinx's Zynq 7020 SoC
 - reconfigurable I/O
 - 32 Gbit NAND Flash
- Small form factor (1U)
- Radiation-tolerant

C.M. Wilson, Dissertation U. Florida, 2018

Multiple Systems, Multiple Modes of hardening

The Case Study

Case Study Will Look at Consequences of Different Radiation Hardening Choices

Memory

Heavy lons

Protons

> Bit Errors

- Manufacturing "Weak" bits
- Radiation
 - Total Dose
 - Single Events

> Device Level Failure

- Functional Interrupt
- Latchup

Smaller heavy ion threat in LEO/MEO missions makes device level failure modes less likely

Part Class	Qual / Rel	Radiation	Cost	Capability	Availability
"Space Grade"	Upscreen	Same	\$10,000	2-10 year lag	Months
Unhardened		Same	\$100	Same	Days

No Rad-Hard, Modern Memory

Using Modern Memory Requires Hardening by Architecture

Device	Node	SEU Rate Improvement
Virtex-II	130 nm	1.0
Virtex-4	90 nm	1.5
Virtex-7	28 nm	28.3
UltraScale	20 nm	52.8
Virtex -5Q	65 nm	1000

Lee, SAND2017-5703C, "Commercial Field-Programmable Gate Arrays"

Part Class	Qual / Rel	Radiation	Cost	Capability	Availability
Space Grade	QML-V Rugedized	1Mrad / No SEL	\$20,000- \$200,000	Old Technology	6-8 Months
Unhardened		30 krad / SEL LET= 15	\$2000	Lower power Better tools	Weeks

Available FPGAs Span a Range of Rad Requirements

FPGAs – The Solutions

Internal TMR

M. Wirthlin, et al., SEU Mitigation and Validation of the LEON3 Soft Processor Using Triple Modular Redundancy for Space Processing

Lee, SAND2017-5703C, "Commercial Field-Programmable Gate Arrays"

Scrubbing

- > 3x Resource Penalty
 > 100x better upset rate
- > No Device Level Mitigation

- > Tuneable Hardness
- Trade Upset Rate for Resource and Dead Time Penalty
- No Device Level Mitigation

Internal Architecture Provides Tunable Hardening but Doesn't Address Device Level Effects

Watchdog Timer

External to FPGA

- Monitors FPGA "heartbeat"
- Resets the processor to an operational state following a "hang"
- > Built with Rad-Hard Parts
 - SEL threshold LET=86 MeV cm2/mg
 - Cheaper than Rad-Hard FPGA

FPGA Hardness is outsourced to External Circuitry

Mitigated with Watchdog for ARM Cores (Patent Number 7,237,148 plus ReExamination Certificate number RE42,314 C1)

Conclusion

- > The Cubesat Space Processor provides a useful case study in how to apply architectural hardening to satellite electronics
- Satellite radiation requirements are highly dependent on the mission profile
 - LEO Low dose, proton rich, short duration
 - MEO High dose, proton rich, long duration
 - GEO Mid dose, heavy ion rich, long duration
- > There are a variety of different approaches to achieve circuit hardness
 - + ECC
 - + TMR
 - Scrubbing
 - Watchdog Timer
- > The best approach trades reliability, cost and function.