The University of Texas at El Paso NASA MIRO Center for Space Exploration & Technology Research

A CubeSat Mission Design & Communication System Development for GTO Mission

CubeSat Developers Workshop April 27th to April 29th, 2021

Authors

Ashiqur Rahman, Amelia Greig, Joel Quintana, Angel Flored-Abad, Jack Chessa, and Ahsan R. Choudhuri

Presenter: Ashiqur Rahman (arahman2@miners.utep.edu)

A Giant Leap Forward

research.utep.edu/cSETR

Orbital Factory 4

Goal

- Demonstrate S-Band communication capability from apogee of GTO orbit
- Measure long-term radiation effects due to electrons & protons in GTO
- Develop and fly novel payloads

Mission challenges

- Long distance communication during apogee passes
- Electrical and communication power limitations
- Increased communication losses
- Passage through the Van-Allen belts
- Probability of Single Event Effects

3U CubeSat planned to launch into GTO

Estimated Orbital Parameters

- Mission not yet manifested
- Prior Atlas V GEO launches analyzed
- Orbital data from spent Centaur stages:
 - Apogee: 35,786 km
 - Perigee: 185 km
 - Inclination: 27 degrees
 - Period: 11 hours, 31 minutes

Satellite System Architecture

- 3U Structure
- PC/104 form factor & system bus
- Allows modules to easily be stacked and routed

Potential Satellite Systems Bus
Command & Data Handling
Tracking, Telemetry & Control
Electrical Power System
Micro-Cathode Arc Thrusters
Temp/Pressure/ Radiation sensors
Cameras

Link Analysis for S-Band Communication

Link Analysis

- 6W transmitter with a 6dB directional antenna
- -125.6 dBm of received power at receiver end
- Signal to Noise Ratio of 10.78dB
- 2.425GHz frequency
- Maximum of 600bps from apogee
- Up to 1Mbps data rate for perigee communication

Antenna pointing

- Required Pointing accuracy ~5 degrees
- Attitude sensing system consists of sun and horizon sensor, star tracker
- Actuator system incorporates magnetorquer, momentum wheels and uCAT thruster

Communication window

Ground Track of Orbital Factory 4 GTO satellite from El Paso, TX

View of OF4 from the ground station at El Paso, TX. Sun, Moon and Zenith vectors are shown

OF-4 Communication Passes

- Simulated mission demonstrates passes occurring every other orbit per day approximately 11 hours apart
- 49 accesses within a 30-day period, with a min of 30 minutes and a max of 9.78 hours of high apogee passes observed

Radiation analysis for GTO

Potential mission challenges

Van Allen Belt

Zone with positive and negative energetic charged particles consisting

- 1. Protons
- 2. Electrons
- 3. Alpha Particles

Inner Belt

Located between 1,000 to 6,000 kilometers and contains high concentrations of electrons and energetic protons **Outer Belt**

Located between 13,000 to 60,000 kilometers with more solar activity and cosmic rays produced by inward radial diffusion

- Solar Wind (charged particles released from sun atmosphere)
- Cosmic Rays (high energy radiation originating outside the solar system)

Radiation analysis for GTO

Combined dose (rads)

Mitigation strategy

- 3mm of titanium shielding
- Use of GaAs circuits
- Use of components with linear energy transfer threshold (LETth) > 100 MeV·cm²/mg
- Reduced length and width of custom devices

Power budget estimation

Solar Cell Specifications

- Standard (GaAs) Solar Panels
- Efficiency: 29.5%
- Effective Cell Area: 30cm sq (per solar cell)
- Available in 5 positions
- Solar Panel +/- XY and +Z axis

Sunlight & eclipse time estimation

- Sunlight time: 86% of total orbital period
- Eclipse time: 14% of total orbital period

Power assumptions

- Recommended battery pack 84Whr
- Total power from solar panel 65Whr per orbit
- Total consumption 55.62Whr
- Regular activity can be performed on Solar power
- 35% battery discharge during eclipse
- Recharge time 4hours (approx.) after eclipse

Demo 3U CubeSat showing Solar panels at 5sides and S-band patch antenna at the –Z axis of the satellite

Attitude control

Default Attitude

- Antenna modeled to track the Earth throughout the orbit
- Orientation: Nadir alignment with ECI velocity constraint
- Targeted pointing method used in STK
- Nominal boresight direction of the antenna is along the Z axis

Procedure to obtain desired attitude

- Magnetorquer detumbling
- Satellite stabilization in 90 minutes in LEO region
- Require 2 perigee passes (24 hours approx.)
- Align satellite for earth viewing
- Attitude adjustments using Arc Thrusters
- Cancellation of disturbance torques

1. Approaching perigee after deployment

2. Detumbling performed at perigee

3. Earth viewing enabled after 2 perigee passes

Tentative Mission Concept of operation

T + 24hrs	 Launch and deployment EPS firmware checks status OBC Boots up / UHF antenna deployment
T + 72hrs	 Phase 2 • Transmission of beacon/housekeeping data reception (Analysis of gyroscope/accelerometer/GPS data) • Magnetorquer detumbling starts • Momentum wheel keeps satellite aligned with the Nadir axis for S-band pointing
T + 7days	 Selection of operating modes based on power status Ensure full battery power / ensure satellite alignment Transmit over S-band upon confirmation over UHF
T + 30 days	 • Take pictures with camera after confirmation over UHF at any orbital location • Keep records of the Single Event Effects and Total Ionizing dosage • Transmit image data/radiation related data
T + 90 days	 • Validation of the data received from satellite • Extended mission • Deorbiting procedure / Disposal

Launch and primary satellite separation

- Launch site: CCAFS (Probably)
- Launch date: TBD
- Vehicle: Vulcan/TBD
- OF-4 powered off during all launch phases

- Approx. T+ 105 minutes after liftoff
- Approx. 9000 km altitude
- OF-4 remains powered off

- Approx. T+ 210 minutes after liftoff
- Approx. Altitude: 29,000 km
- Deployment from ABC
- EPS turns on after 30 minutes
- OBC boot up

.

Operating modes

Stand by mode (T+ 7 hours)

- OBC in idle mode
- Nominal use of satellite components
- Initial system checkout
- Approx. T+ 7 hours from deployment
- Approx. Altitude: 14,000 km
- Exit outer Van Allen belt

Orientation mode (T+8

- Basic attitude control
- Approx. T+ 8.5 hours from deployment
- Approx. Altitude: 250 km
- Enter orientation mode
- Ideal communication altitude
- Attempt UHF communication

Setting up communication in orbit

Active mode (Second orbit T+32hours)

- S-band TX(115min per orbit)
- Attitude control with CMG or momentum wheel (30min per orbit)
- Surface charge monitoring (60 min per orbit)
- Log data from SCM, gyro, accelerometer
- Camera usage (10min per orbit)
- UHF TX 60min / RX 11.5hr

Extended mission

- Check power, orientation, temperature and radiation status
- Take 1photo every 2hours
- 115 minutes of S-Band communication per orbit
- Transmit housekeeping data over UHF & S-band

Mission Success Criteria & Future Works

Mission Success Criteria

- Testing and validation of OF-4 payloads and systems pre-launch
- Successful reception of data and image from OF-4 at apogee
- Restore and validate data acquired from OF-4 by Ground Station located at El Paso, TX.
- Survive and continue extended mission in GTO for at least a month

Future works

- Stakeholders requirements Analysis
- Develop In-house design, fabrication, and testing methods
- Test & Validate Satellite Performance

Thank you!

Participating Live Q&A Panel on Thursday, April 29th at 11 AM Pacific Time