Thermal Management For Lunar IceCube

Dr. Boris Yendler (YSPM), Dr. Benjamin K. Malphrus, Nathan Fite (Morehead State University)

byendler@yspm.net

in depth satellite technical & program services

www.yspm.net

Lunar IceCube Cubesat workshop 2021

Agenda

- Mission Description
 - Mission lifetime
 - Lunar IceCube Design
- Development of Thermal Management System
 - Thermal Requirements:
 - Temperature
 - o Power
 - o operational constraints
- Thermal Model
 - Radiators
 - Simulation
- Discussion
- Conclusion

YSPM, LLC. Satellite Propellant Management

in depth satellite technical & program services

www.yspm.net

Lunar IceCube Cubesat workshop 2021

Lunar IceCube Mission

- NASA 6U cubesat mission to search for surface water ice and other volatiles from a 100 km x 5,000 km near-polar orbit
- Mission is one of several public-private partnerships chosen under NASA's Next Space Technologies for Exploration Partnerships (<u>NextSTEP</u>)
 - Morehead State University 6U satellite bus development and testing, tracking and communication with DSS-17
 - NASA Goddard Space Flight Center miniaturized instrument, the Broadband InfraRed Compact High Resolution Explorer Spectrometer (BIRCHES)
 - BIRCHES carries a 1,000,000-pixel detector that will sense infrared signals emanating from the lunar surface.
 - JPL- Iris transponder and flight communications systems
 - NASA IV&V Center- Flight Software Architecture
 - **Busek** electric propulsion system based on Busek's RF Ion BIT-3 thruster, the world's only propulsion system powered with a solid-state iodine propellant,
- Getting there- using a low energy trajectory based on gravity wells of the sun, Earth and moon, looping around Earth a couple times and then to its destination. Propulsion system allows to naturally capture a lunar orbit.

in depth satellite technical & program services www.yspm.net Lunar IceCube Cubesat workshop 2021

Mission Phases

IceCube Design

IceCube satellite is tightly packed :

- Thermal interaction
 between instruments
- Not easy routing of waste heat to space

Generally speaking : All passengers share the same "boat": bad behavior of one affects all neighbors

YSPM, LLC. Satellite Propellant Management in depth satellite technical & program services www.yspm.net Lunar IceCube Cubesat workshop 2021

Development of Thermal Management

Best practice of Designing of Thermal Management

///

Satellite Propellant Management

YSPM.

Thermal Requirements-Temperature

LUNAR ICE CL	JBE SUBSYSTEMS THERMAL RANGES		
Subsystem		In Space Temp Survival (°C)	In Space Temp Operations (°C)
C&DH	Proton 400K	-40ºC to +85ºC.	-24 to +61 °C
Electrical Power	Articulated Solar Array (Solar panels, gimbals & drive articulators)		-30 to +70 °C
	EPS		-40 to +85
	Batteries	-20 to + 40 degree C	Charge: 0 to +40°C Discharge: -20 to +60°C
AD&ACS	BCT XACT (Star Tracker, Reaction Wheels, Sun Sensor)	-30 to +70 °C	-30 to +35 °C Star Tracker degrades from +35°C to +65°C
Communicati ns	o JPL Iris, SSPA, LNA	-20 to + 50 °C	-20 to +50 °C
	X-Band Patch Antennas (LGAs)	-55 to + 125 °C	-50 to +125 °C
	UHF Beacon	-20 to +70 °C	-20 to +50 °C
Propulsion	Propulsion Subsystem	-30 to +80 °C	-20 to +70 °C
Payload	BIRCHES Spectrometer Optical BOX	-45 to +85 °C	-78 to -45 °C
	BIRCHES DRE (Detector Readout Electronics)	-20C to 70 C	-10 to 40°C
	BIRCHES detector assembly (FPA and LVF)	-20C to 70 C	110K to 115K
	Compact Cryocooler	-20C to 70 C	-10 to 40°C
	mLCCE	-20C to +70C	-10 to +40°C

in depth satellite technical & program services www.yspm.net Lunar IceCube Cubesat workshop 2021

Thermal Requirements – Power

Unit power

Operation Modes

EPS	2.2
C&DH	13.3
UHF Beacon	21.4
BIT-3 Propulsion	35.0
ADS	2.8
ACS - Reaction Wheel	20.0
Solar Panel Gimbal	5.6
BIRCHES Payload	25.0
Xband -LNA	1.0
IRIS SSPA	27.0
IRIS	12.4

		Heat (Watts)
	Deployment, Detumbling & Orientaion	38
Doployment and	Recovery	17
Early One	Ranging &System Checkout	70
(10dovc)	Heating Propellant	71
(IOGAYS)	Calibrating ACS	72
	Trust Vector Orientation	114
Cruico	Thrusting	68
(72.5 days)	Comm and Navigation	113
(75.5 uays)	Standby	81
Conturo & Transition	Periapsis lowering	101
(202 days)	Nav and Tracking	113
(295 days)	BIRCHES Calibration	109
	BIRCHES Calibration&Data collection	71
Science Orbit -	Nav and Tracking	87
7hrs (single)	Communication	95
	Standby	59

in depth satellite technical & program services www.yspm.net Lunar IceCube Cubesat workshop 2021

MOREHEAD STATE UNIVERSITY

8

"Back Envelope Calculations"

Problem

- Total heat dissipation ≈ 114 Watts
- Total radiator area needed $\approx 0.3 \text{ m}^2$
- Total surface area available $\approx 0.24 \text{ m}^2$ (optimistic)

Not enough radiator area to dump all wasted heat at reasonable temperature

Solution(s)

Increase surface - Deployable radiator

Or/And

- Increase radiator(s) temperature
 - Have several independent radiators Ο
 - Connect components with similar temperature range to the same radiator
 - Raise radiator temperature to maximally allowable level Ο
 - <u>Challenge</u>: heat generation by components changes during different operational modes. Therefore, heat generation in total for the same group can change that will lead to change of the radiator temperature.

in depth satellite technical & program services www.yspm.net

Lunar IceCube Cubesat workshop 2021

Thermal Model

in depth satellite technical & program services www.yspm.net Lunar IceCube Cubesat workshop 2021

MOREHEAD STATE UNIVERSITY

Design Options- Radiator Assignment

radiator	component	Rad temp.
-X (fixed)	Ontirel Paul	-80 C
-X (deployable)	Optical Box	
	ADS_ACS	+19.0
+X	reaction wheel	+10 C
	Sol Array Gimbals	
	reaction wheel	
-Y	IRIS	+25 C
	IRIS SSPA	
	BIT3 Chassis	
-Z	BIT3	-20 +50 C
-Z	BIT3 C&DH PR_N 400K	-20 +50 C
-Z	BIT3 C&DH PR_N 400K BIT3 Chassis	-20 +50 C
Z	BIT3 C&DH PR_N 400K BIT3 Chassis reaction wheel	-20 +50 C
-Z	BIT3 C&DH PR_N 400K BIT3 Chassis reaction wheel IRIS SSPA	-20 +50 C
-Z +Y	BIT3 C&DH PR_N 400K BIT3 Chassis reaction wheel IRIS SSPA BAT_PAK	-20 +50 C +30 C
Z +Y	BIT3 C&DH PR_N 400K BIT3 Chassis reaction wheel IRIS SSPA BAT_PAK EPS	-20 +50 C +30 C
-Z +Y	BIT3 C&DH PR_N 400K BIT3 Chassis reaction wheel IRIS SSPA BAT_PAK EPS Detector Electronics	-20 +50 C +30 C
-Z +Y	BIT3 C&DH PR_N 400K BIT3 Chassis reaction wheel IRIS SSPA BAT_PAK EPS Detector Electronics CryoCooler & cold	-20 +50 C +30 C

Spectrometer could not achieve 110K without deployable radiator

Radiators are not shown

in depth satellite technical & program services www.yspm.net Lunar IceCube Cubesat workshop 2021

Operation Modes (example- Reaction Wheel)

Deployment and Early Ops

Cruise

Capture and Transfer to Science

in depth satellite technical & program services

www.yspm.net

Lunar IceCube Cubesat workshop 2021

MOREHEAD STATE UNIVERSITY

2

Science Orbit

in depth satellite technical & program services www.yspm.net Lunar IceCube Cubesat workshop 2021

Lunar Orbit with eclipse

Science Orbit – sunsynk

s/c X axis in orbit plane

	min [C]	max [C]
mLCCE	4.3	29.8
battery	14.4	30.8
IRIS	0.0	33.6
SSPA	4.6	49.4
REACTION wheel	4.7	32.1

s/cY axis in orbit plane

MOREHEAD STATE UNIVERSITY

5

	min [C]	max [C]
CRYO_ELC_BOX	3.3	26.8
battery	2.7	19.2
IRIS	2.0	38.7
SSPA	6.6	55.0
REACTION wheel	8.5	36.7

in depth satellite technical & program services

www.yspm.net

Lunar IceCube Cubesat workshop 2021

Discussion

- Typically, high power cubesats run into problems of having not enough surface to reject waste heat into space at a reasonable temperature. Lunar IceCube represents an example
- Need to satisfy different requirements on different phases of mission timeline makes design of the temperature control system more complicated
- In contrast to large satellites, where all heat generated components are mounted directly on radiators, components in cubesat are mounted on "shelfs". This leads to increase of temperature difference between heat source and radiator and larger radiator
- Spacecraft orientation could affect significantly thermal performance of the satellite.

in depth satellite technical & program services www.vspm.net Lunar IceCube Cubesat workshop 2021

CONCLUSION

- Independent radiators with different operating temperature increased s/c capability to reject waste heat into space.
- A deployable radiator was added because body-mounted radiators could not satisfy the thermal requirements

MOREHEAD STATE UNIVERSITY

 S/c thermal model should be built at the beginning of the project and used as a tool of design optimization, in particular, in cases when instruments are supplied by multi- vendors with considerably dissimilar thermal requirements

in depth satellite technical & program services www.vspm.net Lunar IceCube Cubesat workshop 2021