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Necessity of collision avoidance

• The number of debris has exponentially increased in past 
decades and is always increasing.

• The development of highly efficient electric propulsion 
systems provides higher options for propulsive capabilities 
for CubeSats.

• Thus, a need for development of collision avoidance 
strategies using electric propulsion for CubeSats.



• Mission Objective: To investigate the impact of space radiation on commercial-off the shelf elements.

• Total mission time: ~ 2.5 – 3 years

• Phase 1: Launch into orbit and commissioning

• Phase 2: Lifting the apogee from 500 km to 1000 km

• Phase 3: Radiation measurement in the VAB

• Phase 4: Deorbiting
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CLIMB Mission Scenario



• Orbit Scenario: 

• Initial orbit: 500 km (circular orbit)

• Final orbit: 500 km x 1000 km.

• Orbit raising: Thrust manoeuvre at every perigee. 

• Orbit Drivers:

• Available power

• Data collection by payload.

• Collision avoidance
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Mission Profile
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Workflow
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Population Estimation

• Orbit was segmented with raising in 3 months.

• Higher population at higher angles as 

expected.

• Maximum number of object: 6180.

• Most of objects are in size of e-6 m.

• The final orbit can be chosen based on payload 

and power requirements.
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Theoretical ACPL

• Orbit was segemented to raise by 8 km every 

10 days in pyDRAMA.

• pyDRAMA runs for one year at each segment 

and results are taken as weighted average for 

the whole mission.

• For industrial standard, required ACPL: 10-4; 

Required number of manoeuvres: 0.02



• The study uses Conjunction Data Message received regularly from the FHWN’s first satellite PEGASUS. 

• The data obtained from CDM exhibits a near miss between PEGASUS and a rocket body with miss distance of 
62m at time of closest approach.

• The strategies for collision avoidance are:

• Using thrust manoeuvres

• Changing the drag areas

• The strategy involving thrust manoeuvres also includes uncertainties in the thrust vector. The uncertainties 
considered are:

• +5% in magnitude of thrust.

• -5% in magnitude of thrust.

• 3o variation in direction of thrust.

• 6o variation in direction of thrust.
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Collision Avoidance Strategies
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IFM FEEP Multiemitter

• Wet mass: 900 grams.

• Dimensions: 1U CubeSat unit.

• Propellant mass: 230 grams.

• Thrust: 350 micronewtons

• Specific impulse: 4000 sec

• Power required: 40W
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Using IFM FEEP Thruster for collision avoidance
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Thrusting Firing Epoch Before TCA (number of orbits)

Nominal Thrust +5% Thrust -5% Thrust 6 degrees 3 degrees

• Maximum change in miss distance varies between 12km to 14km.
• A 2km variation can occur due to uncertainties in the thruster.
• Thrust manoeuvres provide enough separation for avoiding conjunction events.
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Using Drag Area to avoid Collision

• Drag acts in direction of motion of satellite.

• Increase Drag -> Slower Satellite

• Reduced Drag -> Faster Satellite

Using minimum drag area Using maximum drag area
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Miss Distance Required

• The required change in miss distance to be considered safe for this conjunction event is about 67m.
• The separation occurs only in along track direction, if the drag area is changed to avoid the conjunction event.
• Collision avoidance using thrust manoeuvre can be used if the required change is in radial or cross-track direction and 

collision avoidance by changing the drag area can be used if required change is in along track direction.
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Conjunction Assessment

• Initial Screening Volume: 51 km x 51 km x 51 km.

• Total identified conjunction events: 71,792.
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Conjunction Assessment

• Screening volumes defined by 18th Space Control Squadron (18 SPCS).

• Screening Volume 1: LEO Basic: 1 km x 1 km x 1km

• Total number of conjunctions: 50

• Screening Volume 2: LEO Advance: 2 km x 44 km x 51km

• Total number of conjunctions: 3984

ToC UTC Miss Distance (in km) Semi-major axis (in km)

2022-12-11T23:44:11.220Z 0.069 7216.1

2022-09-14T06:49:00.700Z 0.091 7123.4

2022-12-19T08:14:54.743Z 0.132 7222.7

2022-10-04T16:31:37.753Z 0.145 7144.4

2022-05-03T18:09:54.646Z 0.151 6989.1
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Conjunction Avoidance Planning

• 1 day plan – to avoid single conjunction event occurring in a single day with no events in near days.
• 2-3 day plan – to avoid multiple conjunctions occurring in small interval, however is thrust manoeuvre is used to 

avoid the first conjunction event, the orbit changes and conjunction assessments needs to be re-evaluated for the 
following days.

• 5-7 day plan – to avoid multiple events over a longer time interval and is critical if the conjunction events occur during 
down-time of the satellite.



• Theoretical ACPL - 3.38 x 10-5 and Number of required manoeuvres to attain required probability level: 0.02,
thus CLIMB can be considered ‘theoretically safe’ during orbit raising.

• No potential dangerous event was identified during conjunction assessment.

• Two strategies for avoiding collisions are developed for CubeSats with propulsive capabilities.

• Changing the drag area strategy can be used to avoid conjunction events from the ‘Basic’ screening volume
and for separations required in along-track directions.

• To avoid conjunction events from ‘Advance’ screening volume thrust manoeuvres are required and for
separations required in cross-track and radial directions.

• Thus, IFM FEEP thruster can be sustainably used for orbit raising as well as collision avoidance for CubeSats.
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Conclusion


