

Mathematical Modeling, Prototyping, and Verification Testing of Low Cost Magnetorquers for 3 Axis Control with Designed and Assembled Coil Winder for UC Davis CubeSat Mission

Chris Andrade (coandrade@ucdavis.edu), Andre Bojikian (abojikian@ucdavis.edu), Srikumar Brundavanam (sbrundavanam@ucdavis.edu), Cassandra Rillamas (carillamas@ucdavis.edu)

OVERVIEW

System Requirements
 Configuration
 Optimization
 Manufacturing

Testing

SYSTEM REQUIREMENTS

Control Requirement	Description
Minimum Magnetic Moment	0.0159 Am^2
Attitude Control Accuracy	Point CubeSat in desired direction within ± 5.0 degrees
DetumblingTime	Detumble CubeSat to below 0.5 deg/sec within 72 hours
Desaturation Time	Desaturate reaction wheels within 12 hours

Constraints	Description		
Dimension Constraint	80mm x 80mm x 25mm		
Power Constraint	≤ 2W		
Mass Constraint	≤ 320 g		

CONFIGURATION

	Air Core	Rod (x2)	
Dimensions	78mm(l) x 78mm(w) x 25mm(h)	71mm(l) x 6mm(d)	
Layers	I	3	
Turns per layer	66	134	
Current	0.6 Amps	0.4 Amps	
Axis Control	z-axis	x-, y- axis	

OPTIMIZATION-RODS

What are we trying to optimize?		What Variables can we Change			
Magnetic Moment	Power Consumption	Mass and Volume	Rod Shape	Number of Turns	Current

OPTIMIZATION EQUATIONS

Magnetic moment equation:

<u>Ohm's Law:</u>

$$V = IR$$

Power equation:

$$P = I^2 R$$

$$m = Mag. Mom. [Am2]$$

$$I = Current [A]$$

$$S = Rod C.S. Area [m2]$$

$$N = \# of Turns [N/A]$$

$$V_{C} = Rod Vol. [m3]$$

$$M = Mag. Factor [A/m]$$

$$I/r = Rod Shape [N/A]$$

$$V = Voltage [V]$$

$$P = Power [W]$$

$$AWG = Wire Diam. [m]$$

OPTIMIZATION EQUATIONS

Things to keep in mind during optimization:

- Voltage is fixed because it depends on external conditions;
- The current is controlled by PWM, and it can be capped off at a certain value;
- For a given value of magnetic moment, a larger current requires less turns on the coil;
- Extremely high number of layers and small radius for the core can both make manufacturing more challenging.

IMPORTANT RELATIONSHIPS

OPTIMIZATION PROCESS

Check if power and space requirements are met. Repeat until a reasonable configuration is acquired. **Choose** number of wire turns and current consumption required to reach minimum dipole requirements

OPTIMIZATION PROCESS -MATLAB CODE

- Tests various combinations of variables;
- Approves all combinations that produce desired results;
- Can be used by any CubeSat developer
- Potential to become interactive.

OPTIMIZATION- AIR CORE

MATLAB code defines complete layers to wind the air core structure for easier manufacturing.

MANUFACTURING- COIL WINDER

Why?

Faced multiple problems while trying to hand wind the coils.

- Varying number of turns
- Wire intertwining
- <u>Solution:</u> Build a coil winder that could wind both the torque rods and the air core coils.
 - Can define the number of turns and avoid the wire from getting intertwined.

How?

All parts for the winder are 3-D printed out of PLA plastic on our campus 3D printing shop.

What?

The coil winder includes two stepper motors and two drivers, one controlling the wire and the other for spinning coil.

TESTING

Goal:

Test if magnetorquer design produced desired magnetic moment

Data Collected

Magnetic field readings from magnetorquer at various points using a magnetometer.

MATLAB Calculations:

- Input: Earth's magnetic field and magnetorquer's magnetic field readings
- **Output:** Magnetic moment produced by magnetorquer

Test Setup:

- Octagon base holds coils and rotates to allow measurement of magnetic field from various angles
- Rotating base maintains the magnetometer stable without effecting our values

FUTURE WORKS

- Controls testing: Current prototypes will be handed off to the electrical system to test with PCB for the controls and software system for B-Dot controls.
- Manufacturing flight test configuration: Producing the complete magnetorquer design of one air coil and 2 rods using the selected space grade material for flight testing.
- Create a guide for universities to follow using our methods (publishing)

REFERENCES

- N. Bellini, "Magnetic Actuators for Nanosatellite Attitude Control," Universita di Bologna, Tesi di Laurea, 2013/2014.
- Larson, Wiley J., et al. SMAD III: Space Mission Analysis and Design, 3rd Edition: Workbook. Microcosm Press, 2005.

Thank You