

TechEdSat-1 (ISS Jettison Oct. 4, 2012) (HTV-3 July 12,2012)

TechEdSat-3 (ISS Jettison Nov. 20, 2013) (HTV-4 Aug 3, 2013)

TechEdSat-4 (ISS Jettison March 4, 2015) (Antares-120 July 13,2014) SJSU Virtual Reality, View from a Cube Satellite

Integration: October 17, 201

Launch Date: December 5, 2018 Launch Vehicle: SpaceX CRS-16 Jettison Date: January 31st, 2019

April 25, 2019

Presented By:

Jesus Ramiro Rosila Mares

TechEdSat Team

TechEdSat-6 (ISS Jettison Nov 20,2017) (ATK-8 Nov. 12, 2017)

TechEdSat-5 (ISS Jettison March 6,2017) (H-II Dec 9, 2016)

TechEdSat-N and SOAREX Flight Series

First Exo-Brake

SOAREX-6 2008

SOAREX-7 2009

PSRP space process COM mastered demonstration Rad-tolerant processor demo

Aug 3, 2013 (6 wk deorbit)

Evolution of TES-3 WSM1, AIM Iridium modem Camera Uplink/via email X-Band, ISMdemonstrated Band, P5 alpha, Exo-Brake II **ISM-Camera and** Full ExoBrake

TES-4 Mar 3, 2015 (4 wk deorbit

SOAREX-8 During test

SOAREX (WFF) -9 (WFF) July 7, March 3, 2015 2016

WSM2, AIM

Camera

ISM-Band, P5 alpha, ISM-

Camera

41.114 NP DeLeon launched

March 7, 2016

TechEdSat5/P honeSat5 March 6, 2017

Modulated Exo-Brake

Improved

positional/target

accuracy

Improved Targeting,

WSM2, ISM Band

First cubesat commanded and target for re-entry, ISM band, WSM2

TechEdSat-6 (ISS Jettison Nov 20,2017)

Recent Years of Flight Experiments (2008-2015): 6 Flights +1(SOAREX8&9) +PhoneSats 1-4

First Lunar and Mars radio. control board with magnetorquers, VR and Nvidia board, rad-tolerant power board.

Launch Date: December 5, 2018; Launch Vehicle: SpaceX CRS-16; Jettison Date: January 31st, 2019

Let's Load and Go

NASA

Ali Guarneros Luna (Co-PIA/SMA), Marc Murbach (PI), Alejandro Salas, Cedric Priscal, and TechEdSat Team.

SJSU Professors

Dr. Periklis Papadopoulos, Robert Bruce, Nanci Solomon

Students

Roberto Rosila Mares, Jesus R. Rosila Mares, Reine Ntone Sike, Johnny A. Barajas, Bernardo Soriano-Gama

TES/P Team Summer 2017

Background

ISS EDL Capabilities For Future Missions

SPQR-Small Payload Quick Return

- 3 stage concept
- Rapid Development and Test of science and technology

Atromos: Cubesat Mission to the Surface of Mars

- Mission Attributes
 - Self-stabilizing re-entry probe (TDRV-Tube Deployed Re-Entry Vehicle)
 - EDL Technique for small probes
 - Nuclear option for mission longevity

TES-8 Exploded View

VR (SJSU Experiment)

Mission Goal of VR Team

- Obtain Stereoscopic video of the exterior of ISS as TES-8 was jettisoned from the NanoRacks Deployer (NRCSD).
- Command TES-8 via Iridium to turn on PhoneSat and command VR to record videos.
- VR provides the ability for millions to experience space missions remotely in 3D.
- Combined with NVIDIA's TX2 AI compute engine, it can become a powerful next-gen tool for local real-time analysis and decision making.
- Transfer image data to Intel Edison Board
- Analyze packets send via Iridium vs. SBAND
- Validate NVIDIA TX2 edge (local) onboard computing capabilities
 - Measure system performance
 - Capture, encode, packetize stereo HD video

Bernardo and Austin working on TechEdSat 8

SJSU Software Diagram

[SJSU] VR

Environmental Testing

Computing

Raspberry PI 3, ODROID-N2, NVidia TX2

Daughter board

AVerMedia's EX731-AA/N1, Connect Tech's Orbitty Carrier

Camera

ZED Stereo Camera, LI-OV580-STEREO Choices between software. C++, Shell/Unix, Bash script.

Pre-flight validation test

Pre-flight test validation with more than 200:1 compression ratio.

Transmitting from Space

How to bring data down for VR Experiment

- NEN-compatible S-band
 - uses SDR transmitter (ETTUS) intended for use in one of the EM-1 nanosat payloads
- LEO applications
 - ~15 ground antennas scattered over the globe
 - Increase of the downlink capability of current generation nano-sats
- TechEdSat-8 experiment
 - transmit data gathered from the VR (Virtual Reality) experiment, during which >200:1 compression techniques would be used
 - validate the COM system of a 'pathfinder' EM-1 payload
 - high volumes of optical data would be processed on-board with the NVIDIA TX2 system, compressed, and downlinked.

CONOPS

- Nanosat is jettisoned from the ISS/NRCSD
- TES-8 powers the core microprocessors/Iridium/VR/ Cameras
- Records for 30sec (after 42 sec latency)
 - 30 Frames/sec
 - Video resolution 2560x720pixels
 - Total data 3.3GB
- NVIDIA/TX2 performs 200:1 compression to result in 7.5MB (60 Mb)
- Wifi transmission to the PhoneSat/Intel-Edison
- Phonesat partitions compressed file 10x resulting in 6Mb/file
- Wait for Iridium-1,2 command to downlink compressed data to NEN(Near Earth Network) antennas at 125Kb/s
- Repeat 10 times

- More functions to the Sub system, such as different video types, frame rates, size.
- Different cameras/position on Satellite
- More cameras around the whole system. Truly get a full VR experience of the satellite.
- Eventually be able to use this as the eyes to the satellite for later **attitude control designs**.
- First demonstration
 - Power cycling, thermal management, data processing, and data transfer
- Compression of very large data for optical instruments (e.g. hyperspectral)
- Al algorithms to determine which data sets manipulate and send to ground station
- Coupled with high data rate downlink capability (e.g. Use of NEN with S-Band and/or X-BAND Capability; Limited laser com)

- One of the first flight demonstrations of a COTS graphics GPU (256-core NVIDIA/TX2) is described
- Flown as a sub-experiment on the TechEdSat-8 nano-sat (NASA Ames) and deployed on Jan 31, 2019
- TES-8 is a series nano-sat, with 150W-hr power system and 8 transmitters developed as a Nano—Orbital Workshop (NOW) to rapidly involve innovative technologies.
- The NVIDIA/TX2 experiment collected **3.3 GB of ISS video data** from the VR experiment and successfully compressed **200:1** using the **H.264 algorithm**.
- The 5.3MB compressed file was then to be downlinked via an experimental SDR s-band

 but power system anomaly before the downlink carried out (after 2 successful weeks
 of operation, partial down link via iridium)
- Minimum use of high transistor density GPU appears VIABLE as long as it is used sparingly (due to radiation effects, it should be powered 'OFF' unless needed)
- Future tests planned on TES10, 12 with enhanced SW and revised power subsystem and Lunar Radios

San Jose State University AE Department CS Department

NASA Ames Research Center Space Project Facility Small Spacecraft Technology Program

- E. J. Wyrwas (Oct 2016) *Proton Testing of nVidia Jetson TX1* <u>https://nepp.nasa.gov/files/28487/NEPP-TR-2016-Wyrwas-16-038-Jetson-TX1-MGH2016Oct-TN44749.pdf</u>
- Nvidia (2017) *Jetson TX2 Developer Kit.* Retrieved from <u>https://developer.nvidia.com/embedded/downloads</u>
- Ffmpeg (2018) *ffmpeg Documentation* Retrieved from <u>https://ffmpeg.org/ffmpeg.html</u>
- ISS Conference 2018-Current Development of the Exo-Brake and Prospects for On-Demand Sample Return from the ISS <u>http://amz.xcdsystem.com/4F14E44B-BC41-E69B-</u> <u>DFAF5A1B1627A0EA_abstract_File10384/PDFUpload_189_0720010951.7.pdf</u>
- ISS Conference 2018-The TechEdSat-N Series: A Collaborative Technology Development Platform in the Nano-Satellite Form Factor <u>http://amz.xcdsystem.com/4F14E44B-BC41-E69B-</u> <u>DFAF5A1B1627A0EA_abstract_File10384/PDFUpload_185_0720010551.4.pdf</u>

