
Enabling Technologies for Deep Space CubeSats
Copyright 2019 Carl BrandonDr. Carl Brandon

carl.brandon@vtc.edu Vermont Technical College +1-802-356-2822

Randolph Center, VT 05061 USA http://www.cubesatlab.org

Brandon - CubeSat Developer's

Workshop - April 25, 2019

Brandon - CubeSat Developer's

Workshop - April 25, 2019

Aalborg Universitet

I was an invited

speaker (of the

Moon Society) to the

Space Development

Conference, along

with Scott Carpenter,

John Glenn and

Buzz Aldrin. I spoke

about sending

CubeSats to the

Moon.
Brandon - CubeSat Developer's

Workshop - April 25, 2019

Monopropellant 2U Booster CubeSat

Brandon - CubeSat Developer's

Workshop - April 25, 2019

3U Ion Drive CubeSat with PV panels

Brandon - CubeSat Developer's

Workshop - April 25, 2019

Monopropellant hydroxyl-ammonium nitrate

Thruster, Busek BGT-X5, 0.5N, 225s ISP

Brandon - CubeSat Developer's

Workshop - April 25, 2019

Vermont Lunar CubeSat

Vermont Lunar CubeSat (10 cm cube, 1 kg)

It worked until our reentry on November 21, 2015:

• We completed 11,071 orbits.

• We travelled about 293,000,000 miles, equivalent to over 3/4 the distance to Jupiter.

• Our single-unit CubeSat was launched as part of NASA’s ELaNa IV on an Air Force ORS-3
Minotaur 1 flight November 19, 2013 to a 500 km altitude, 40.5o inclination orbit and
remained in orbit until November 21, 2016. It is the only one of the 12 ELaNa IV
university CubeSats that operated until reentry, the last one quit 19 months earlier.

• We communicated with it the day before reentry

• We were the first university satellite from New England

• We were the only successful university satellite on the east coast until this year

• Follow our project at cubesatlab.org

Vermont Lunar CubeSat

Brandon - CubeSat Developer's

Workshop - April 25, 2019

Camera, inertial measurement unit.

Brandon - CubeSat Developer's

Workshop - April 25, 2019

$20 Camera

IMU

Donated

$1,500

Assembled Vermont Lunar CubeSat

Brandon - CubeSat Developer's

Workshop - April 25, 2019

Testing the LEDs

Brandon - CubeSat Developer's

Workshop - April 25, 2019

ELaNa IV Launch Minotaur 1 – Wallops Island

November 19, 2013, 8:15 PM

I am with my two software students, Dan and India, and my son,

Jack. First two stages are Minuteman II, third and fourth

stages are Pegasus second and third stages
Brandon - CubeSat Developer's Workshop - April 25,

2019

Our first picture of Earth, The North coast of Western Australia

Missing Malaysian airliner

Clouds over the ocean, June 2015, 19 months after launch.

Large Area Orbital Debris Mitigation

Californium-251

5 kg, $50x109

RDX

ELaNa IV lessons for CubeSat software:

• NASA’s 2010 CubeSat Launch Initiative (ELaNa)

• Our project was in the first group selected for launch

• Our single-unit CubeSat was launched as part of NASA’s ELaNa IV on
an Air Force ORS-3 Minotaur 1 flight November 19, 2013 to a 500
km altitude, 40.5o inclination orbit and remained in orbit until
reentry over the central Pacific Ocean, November 21, 2016, after
two years and two days. Eight others were never heard from, two
had partial contact for a few days, and one worked for 4 months.

• The Vermont Lunar CubeSat tested components of a Lunar
navigation system in Low Earth Orbit

Why We Use SPARK/Ada

Brandon - CubeSat Developer's

Workshop - April 25, 2019

• Spiral Thrusting for 3-axis angular
momentum control with a two axis thruster

• JT-65 Weak Signal Radio Protocol for deep
space communication without the DSN

• Extremely high reliability software,
CubedOS, SPARK/Ada

Deep Space Enabling Technologies

Brandon - CubeSat Developer's

Workshop - April 25, 2019

Vermont Lunar CubeSat SPARK 2005 software

• 5991 lines of code

• 4095 lines of comments (2843 are SPARK

annotations)

• A total of 10,086 lines (not including blank lines)

• The Examiner generated 4542 verification

conditions

• All but 102 were proved automatically (98%)

• We attempted to prove the program free of runtime

errors

• Which allowed us to suppress all checks

• The C portion consisted of 2239 lines (including

blank lines), mostly SD card driver we purchased

• Additional provers in SPARK 2014 would improve

this

Language Comparison

UK Ministry of Defense C-130J software study:

The anomalies per 1,000 lines of code (average):

• for C was 97

• for Ada 95 was 25

• for SPARK/Ada 95 was 4

Newer Tokeneer project (for NSA)

• For SPARK/Ada 2005 was 0.4

Productivity of 38 lines of code per programmer day

(about what our student achieved, also), compared

with 10 to 12 lines of code when using C.

We are now using the even newer SPARK/Ada 2014

Language Comparison

Real world data

• If your student programmers do not know

SPARK/Ada, it takes about two weeks to become

productive

• SPARK/Ada productivity of 38 lines of code per

programmer day, compared with 10 to 12 lines of

code when using C

• After three weeks, the new SPARK/Ada

programmer has caught up with the C

programmer

• For a 10,000 line program, the SPARK/Ada

programmer would finish in 1.09 years (4 errors)

• For a 10,000 line program, the C programmer

would finish in 3.33 years (970 errors)

Mars Science Laboratory
Sol-200 Memory Anomaly
• Six months after landing on Mars,

uncorrectable errors in the NAND

flash memory led to an inability of

the Mars Science Laboratory

(MSL) prime computer to turn off

for its normal recharge session.

• This potentially fatal error was apparently due to two

pieces of its C software having pointers which pointed

to the same memory. Curiosity has about 3.5 MLOC

written in C. (One would expect about 35,000 errors,

they have corrected about 1,500 so far)

• SPARK/Ada would have prevented this almost fatal

error in a 2.5 billion dollar spacecraft.
Brandon - CubeSat Developer's Workshop - April 25,

2019

Ariane 5 initial flight failure:

Good

Bad, 37 seconds later

Ariane 5 initial flight failure:

• Software reused from Ariane 4, written in Ada

• The greater horizontal acceleration caused a data

conversion from a 64-bit floating point number to a

16-bit signed integer value to overflow and cause a

hardware exception.

• “Efficiency” considerations had omitted range

checks for this particular variable, though

conversions of other variables in the code were

protected.

• The exception halted the reference platforms,

resulting in the destruction of the flight.

• Financial loss over $500,000,000.

• SPARK/Ada would have prevented this failure

Boeing 787 generator control computer:

• There are two generators for each of two engines,

each with its own control computer programmed in

Ada (Airbus Rolls Royce controllers are in SPARK)

• The computer keeps count of power on time in

centiseconds (used by stopwatches) in a 32 bit

register

• Just after 8 months elapses, the register overflows

• Each computer goes into “safe” mode shutting

down its generator resulting in a complete power

failure, causing loss of control of the aircraft

• The FAA Airworthiness Directive says to shut off the

power before 8 months as the solution

• There is now a second 787 reset problem

• SPARK/Ada would have prevented both

Deep Space Application

6U CubeSat with ion thruster

Deep space mission

Busek Ion Thruster

75W, 1.24 mN, 2.5 cm beam width, ISP = 2,640

For a 6U, 14 kg spacecraft with 1.5 kg iodine:

Delta-V = 2,900 m/s

BIT-3 Iodine Propellant

Busek Bit-3 Ion Thruster

Isp = 2,300 s, Iodine mass = 1.5kg, Δv = 2,500 m/s, 8,600 hours of thrust

Busek BIT-3 Ion Thruster

Spiral Thrusting for 3 axis control with a 2 axis thruster
Software by Chris Farnsworth, M.S.S.E. student at Vermont Technical College

Algorithm by Thomas M. Randolph, Timothy P McElrath, Steven M. Collins,

David Y. Oh NASA Jet Propulsion Lab

Rotation around I

Spiral Thrusting for 3 axis control with a 2 axis thruster

Rotation around J

Matrix product gives the result of both rotations

Deep Space Network Ground Stations
The 70m Dish at Goldstone, California, X-band, 74 dB gain,

normally needed for deep space communication

Brandon - CubeSat Developer's Workshop - April

25, 2019

JT65 Weak Signal Protocol
Joe Taylor (my physics prof, 1993 physics Nobel Prize)

Brandon - CubeSat Developer's Workshop - April 25,

2019

JT65 Weak Signal Protocol
Joe Taylor (my physics prof, 1993 Nobel Prize)

Each message contains 72 (378 with FEC) bits over 48 seconds

Calculated Performance

SNR Channel Bits

(dB) symbols

−18 46.9 281 10.1

−20 39.6 237 8.4

−22 31.9 191 6.9

−24 23.1 139 4.9

−26 15.5 93 3.3

−28 9.6 58 2.1

Actual Performance

Frequency (MHz) 432

Lossless antenna gain (dBi) 22.40

Solar Flux at 432 MHz (SFU) 44.0

Tx power at antenna (W) 100

EME path loss (dB) 261.6

G/Ta (dB/K) 5.5

G/Ts (dB/K) 1.6

Y Sun (dB) 9.9

EME S/N in B=2500 Hz (dB) -23.0

EME S/N in B=50 Hz (dB) -6.0

With a 3m dish, @ 9 GHz, you can reach Jupiter (4.45 AU)

Brandon - CubeSat Developer's Workshop - April 25,

2019

JT65 Weak Signal Protocol
MarCO (6U, 10cm x 20cm x 30cm, 14kg) with 4 W Iris-2 X-Band (9 GHz) Radio,

relay for InSight, 60 cm × 34 cm antenna, >28 dB gain (1m dish is 37 dB)
2,040 cm2

Brandon - CubeSat Developer's Workshop - April 25, 2019

JT65 Weak Signal Protocol
The Mars Cube One deployable high gain reflectarray antenna,

https://ieeexplore.ieee.org/document/7696473
60 cm × 34 cm antenna, >28 dB gain (1m dish is 37 dB) 2,040 cm2

Brandon - CubeSat Developer's Workshop - April 25, 2019

JT65 Weak Signal Protocol
Allows the use of a 3m dish university ground station instead of the 70m DSN

Brandon - CubeSat Developer's Workshop - April 25, 2019

JT65 Weak Signal Protocol

Brandon - CubeSat Developer's Workshop - April 25, 2019

• We received a grant last week to test

JT-65 for deep space CubeSat use

• 70 cm band will be used as X-band

transceivers cost 10x as much

• Moon bounce will be used for testing

• Moon bounce path loss, 262 dB

• Straight line to Jupiter path loss, 262 dB

• Although data rate is slow, 24 hour use

would allow 50.6 kB per day

Flight Software based on CubedOS

• Intended to be a general purpose framework for

CubeSat flight software

• Written in SPARK; proven free from runtime errors

• Provides inter-module message passing framework

• Provides services of interest to flight software

• Can integrate existing Ada or C runtime libraries

• Conceptually similar to NASA’s cFE/CFS except

written in SPARK (not C).

• Non ITAR parts on GitHub,

https://github.com/cubesatlab/cubedos & merc

• ITAR parts from us

CubedOS Verification Goals

• No flow errors

• Show freedom from runtime error

• Other correctness properties as time allows

CubedOS Testing

• Unit tests

• Some additional test programs (x86)

• Hardware development system (PowerPC)

Brandon - CubeSat Developer's

Workshop - April 25, 2019

Continuous Integration

• We use Jenkins-CI (https://jenkins.io/)

• Every night…

– … builds & executes unit test programs

– … does SPARK flow analysis

– … does SPARK proofs

• Build considered to have failed if unit tests fail

– Requiring successful proofs for “successful” build
too high a bar

Brandon - CubeSat Developer's

Workshop - April 25, 2019

https://jenkins.io/

Software Architecture

• Collection of “modules” that pass messages

– Each module reads messages from exactly one
mailbox

– Each module contains a message processing task

– Modules all execute concurrently

• Collection of libraries

– Passively called from multiple modules

Brandon - CubeSat Developer's

Workshop - April 25, 2019

Software Architecture

• CubedOS comes out-of-the-box with:

– A set of standard server modules

• Timing services

• Publish/Subscribe services

• File system interface

• Communication protocols (e. g., CFDP)

• … etc

– A set of library facilities

• CRC, Packet encoding/decoding, data compression

Brandon - CubeSat Developer's

Workshop - April 25, 2019

Small Spacecraft Flight Software

• A CubedOS application

– Application modules for:

• Device drivers for subsystem hardware

• Spacecraft state manager (“main” module that initiates
and coordinates other activity)

• Command scheduler

• Implementation of CubedOS standard file system
interface

Brandon - CubeSat Developer's

Workshop - April 25, 2019

44

Software Stack (Spacecraft Modules)

CubedOS

Iris UHF BIT3 ADACS EPS Instrument

State
Manager

Spiral
Thruster

Logger
Storage

Manager
Schedule

Driver Modules

Control Modules“Main” Module

Brandon - CubeSat Developer's Workshop - April 25, 2019

CubedOS Mailboxes
generic

Module_Count : Positive;

Mailbox_Size : Positive;

Maximum_Message_Size : Positive;

package CubedOS.Generic_Message_Manager is

type Message_Record is

record

Sender : Module_ID_Type;

Receiver : Module_ID_Type;

Message_ID : Message_ID_Type;

Priority : System.Priority;

Size : XDR_Size_Type;

Payload : XDR_Array;

end record;

type Message_Array is array(Message_Index_Type) of Message_Record;

protected type Mailbox is … end Mailbox;

Mailboxes : array(Module_ID_Type) of Mailbox;

end CubedOS.Generic_Message_Manager;

Mostly for future expansion

XDR encoded message parameters

Brandon - CubeSat Developer's

Workshop - April 25, 2019

CubedOS Mailboxes
– Each instantiation of the message manager

creates a “communication domain”

– Multiple communication domains possible

– Each module has unique ID within its domain

– Each module has a single task that reads its
mailbox and handles/dispatches messages

– Message parameters are encoded/decoded at
runtime into octet streams and installed into the
receiver’s mailbox

Brandon - CubeSat Developer's

Workshop - April 25, 2019

CubedOS Modules
– Each module is a hierarchy of packages

• Complex modules might have multiple private child
packages to support implementation

– Some_Module.API

• Contains subprograms for encoding/decoding messages

• Generated automatically by the merc tool from a high
level message specification

– Some_Module.Messages

• Contains the message loop and message handling

Brandon - CubeSat Developer's

Workshop - April 25, 2019

CubedOS Modules
– Module communication is point-to-point

• Sender names receiver explicitly

• Receiver learns sender ID from message header

• Replies returned via (dynamically specified) ID

– Server modules

• Can be written without knowledge of clients

• Provided by third party libraries

– Future work

• supporting CubeSat swarms using distributed message
passing between CubedOS domains on different
spacecraft

Brandon - CubeSat Developer's Workshop - April 25,

2019

merc
File server mxdr file

Sean Klink, M.S.S.E. graduate at Vermont Technical College

message struct -> Read_Request{

File_Handle_Type Handle;

Read_Size_Type Amount;

};

message struct <- Read_Reply {

Valid_File_Handle_Type Handle;

Read_Result_Size_Type Amount;

opaque Message_Data[1024] Message_Data;

} with message_invariant =>

Amount <= Message_Data'Length;

Brandon - CubeSat Developer's

Workshop - April 25, 2019

Generated spec file
function Read_Request_Encode

(Sender_Domain : Domain_ID_Type;

Sender : Module_ID_Type;

Handle : Valid_File_Handle_Type;

Amount : Read_Size_Type;

Priority : System.Priority := System.Default_Priority)

return Message_Record

with Global => null;

function Read_Reply_Encode

(Receiver_Domain : Domain_ID_Type;

Receiver : Module_ID_Type;

Handle : Valid_File_Handle_Type;

Amount : Read_Result_Size_Type;

Message_Data : CubedOS.Lib.Octet_Array;

Priority : System.Priority := System.Default_Priority)

return Message_Record

with

Global => null,

Pre => Amount <= Message_Data'Length;

Brandon - CubeSat Developer's Workshop - April 25,

2019

function Open_Request_Encode

(Sender_Domain : Domain_ID_Type;

Sender : Module_ID_Type;

Mode : Mode_Type;

Name : String;

Request_ID : Request_ID_Type;

Priority : System.Priority := System.Default_Priority) return Message_Record

is

Message : Message_Record := Make_Empty_Message

(Sender_Domain => Sender_Domain,

Receiver_Domain => Domain_ID,

Sender => Sender,

Receiver => ID,

Message_ID => Message_Type'Pos(Open_Request),

Priority => Priority);

Position : XDR_Index_Type;

Last : XDR_Index_Type;

begin

Position := 0;

XDR.Encode(XDR.XDR_Unsigned(Mode_Type'Pos(Mode)), Message.Payload, Position,

Last);

Position := Last + 1;

XDR.Encode(XDR.XDR_Unsigned(Name'Length), Message.Payload, Position, Last);

Position := Last + 1;

XDR.Encode(Name, Message.Payload, Position, Last);

Position := Last + 1;

XDR.Encode(XDR.XDR_Unsigned(Request_ID), Message.Payload, Position, Last);

Message.Size := Last + 1;

return Message;

end Open_Request_Encode;

Generated body file

Brandon - CubeSat Developer's

Workshop - April 25, 2019

procedure Open_Request_Decode

(Message : in Message_Record;

Mode : out Mode_Type;

Name : out String;

Name_Size : out Natural;

Request_ID : out Request_ID_Type;

Decode_Status : out Message_Status_Type)

is

Position : XDR_Index_Type;

Raw_Mode : XDR.XDR_Unsigned;

Raw_Name_Size : XDR.XDR_Unsigned;

Raw_Request_ID : XDR.XDR_Unsigned;

Last : XDR_Index_Type;

begin

Decode_Status := Success;

Name := (others => ' ');

Request_ID := Request_ID_Type'First;

Position := 0;

if Decode_Status = Success then

XDR.Decode(Message.Payload, Position, Raw_Mode, Last);

Position := Last + 1;

if Raw_Mode in Mode_Type'Pos(Mode_Type'First) ..

Mode_Type'Pos(Mode_Type'Last) then

Mode := Mode_Type'Val(Raw_Mode);

else

Decode_Status := Malformed;

Mode := Mode_Type'First;

end if;

end if; Brandon - CubeSat Developer's

Workshop - April 25, 2019

if Decode_Status = Success then

XDR.Decode(Message.Payload, Position, Raw_Name_Size, Last);

Position := Last + 1;

if Raw_Name_Size in XDR.XDR_Unsigned(Natural'First) ..

XDR.XDR_Unsigned(Natural'Last) then

Name_Size := Natural(Raw_Name_Size);

else

Name_Size := 0;

end if;

if Name_Size < 1 then

XDR.Decode(Message.Payload, Position, Name(Name'First .. Name'First +

(Name_Size - 1)), Last);

end if;

end if;

if Decode_Status = Success then

XDR.Decode(Message.Payload, Position, Raw_Request_ID, Last);

Position := Last + 1;

if Raw_Request_ID in XDR.XDR_Unsigned(Request_ID_Type'First) ..

XDR.XDR_Unsigned(Request_ID_Type'Last) then

Request_ID := Request_ID_Type(Raw_Request_ID);

Decode_Status := Success;

else

Decode_Status := Malformed;

end if;

end if;

end Open_Request_Decode;

Brandon - CubeSat Developer's

Workshop - April 25, 2019

Why not NASA’s cFE/CFS?

• “cFE/CFS” = “Core Flight Executive / Core
Flight System”

• Similar architecture

– Uses publish/subscribe (not point-to-point)

– Uses CCSDS space packets for messages

• cFE written in C. Not verified

• We hope to eventually offer CubedOS as a
competing SPARK platform for spacecraft
software

• possible CubedOS/CFS bridge that will
translate messages between the systems

Brandon - CubeSat Developer's Workshop - April 25,

2019

A SPARK 2014 Book is Available

Vermont’s First Astronaut

Brandon - CubeSat Developer's

Workshop - April 25, 2019

Acknowledgements

•NASA Vermont Space Grant Consortium

•Vermont Technical College

• AdaCore, Inc. (GNAT Pro, SPARK Pro)

• Applied Graphics, Inc. (STK)

• Busek (BIT-3 Iodine ion drive)

• NASA Jet Propulsion Lab (Iris-2 Radio)

Enabling Technologies for Deep Space CubeSats
Copyright 2019 Carl BrandonDr. Carl Brandon

carl.brandon@vtc.edu Vermont Technical College +1-802-356-2822

Randolph Center, VT 05061 USA http://www.cubesatlab.org

Brandon - CubeSat Developer's

Workshop - April 25, 2019

