Solar Panels for Cubesat Missions

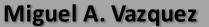
2019 CubeSat Developers Workshop April 23, 2019

Outline presentation

Company description

 Solar panels for CubeSat missions

Company description



Technological based start-up Space photovoltaic technology

Management Board & Founders

PhD on Physics University of Sevilla. More than 20 years of profesional experience: University of Sevilla, Isofoton

Vicente Diaz

PhD on Physics Polytechnic University of Madrid. More than 25 years of profesional experience: Indra, University Carlos III Madrid, Isofoton

Francisco Rubiño

Industrial Engineer and MBA. Over 27 years of Executive positions, operations and general management: Schott, Isofoton, Flex, Ence

Technical Staff

- Electronic Engineers
- Chemical Engineers
- Telecommunication Engineers
- Mechanical Engineers
- Physicists
- Aeronautic Engineers

Current employees: 25

Markets

- LEO constellations
- LEO deployable, body mounted CubeSats
- Deep Space mission (Moon, Mars, asteroids research missions)
- GEO scientific missions

Markets

SpaceWorks 2018

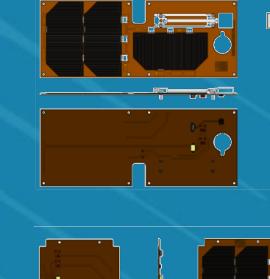
- 320 m²
- 145 m² clean room
 - 115 m² ware house and others.
- 60 m² office

Solar Panels for CubeSat Missions

- Solar Arrays designed and manufactures for G.A.U.S.S. Srl Rome Italy
 - First flight 19th of June 2014 620 Kms
 - Mission: UNISAT-6. DNPER launcher Yasni (Russia)

UNISAT 6 with DHV Technology panels

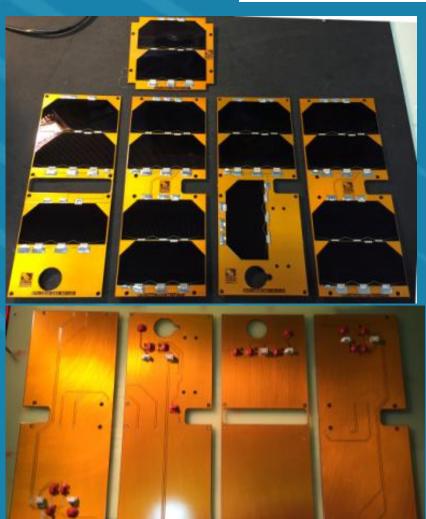
Solar array DHV



Open Cosmos Ltd – Solar panels for 2U Cubesats

During the last quarter of 2015 DHV Technology has designed and manufactured the solar panels for QBEE-1, 2U CubeSat of England company Open Cosmos Ltd.

Temperature sensors have been integrated in the solar panels. The launch was on 18 May 2017 from ISS using the NanoRacks deployable system.



Open Cosmos Ltd – Solar panels for 2U Cubesats

During the last quarter of 2015 DHV Technology has designed and manufactured the solar panels for QBEE-1, 2U CubeSat of England company Open Cosmos Ltd.

Temperature sensors have been integrated in the solar panels. The launch was on 18 May 2017 from ISS using the NanoRacks deployable system.

C Open Cosmos

Qualified projects

Cal Poly – California Polytechnic State University (USA)

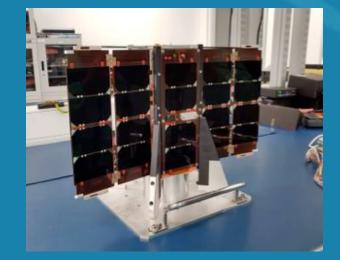
During 2017 DHV Technology has signed a contract to provide custom solar cells to CalPoly. Solar cells have been delivered in summer 2017 and will be used in the mission ExoCube2 that will be launched on 2019.

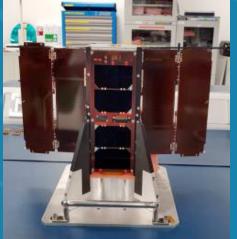
Qualified projects

OAKMAN Aerospace, Inc. (USA)

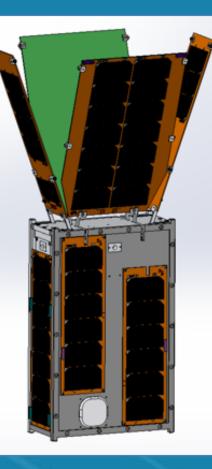
Oakman Aerospace, Inc.

During 2016 DHV Technology has signed a contract with Oakman Aerospace Inc. from Colorado (USA) to design and to supply 3U based mounted solar panels. Solar panels are being manufactured during 2017 and they have been delivered in May 2017.




Nanyang Technologycal University

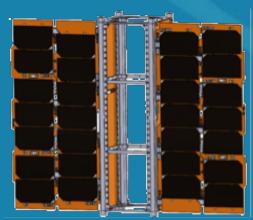
Mission AOBA VELUX IV. This project consists of a set of double-deploy array designed and manufactured by DHV Technology. Each 2U CubeSat structure will have two deployable systems. This deployable system will include temperature sensors, photodiodes and thermal knifes.


Qualified projects

TRYAD mission

Terrestrial RaYs Analysis and Detection (TRYAD) is a Cubesat mission on 6U platform developed by AUBURN University.

Multi-point Observations of Terrestrial Gamma-ray Flashes (TGFs) to test TGF Beam Models


© Confidential information

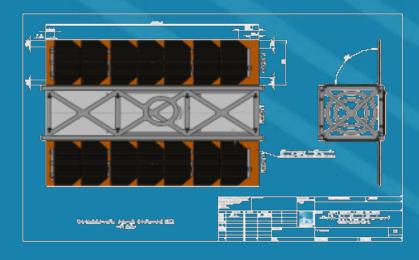
OHB Italia

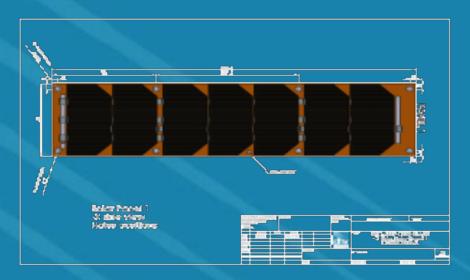
During 2016 DHV Technology has signed a contract with OHB Italia to design and to manufacture the double deployable 3U Cubesat solar panels for EAGLET 1 mission. The critical design review has been closed during the summer of 2017 and the solar panels have been delivered in November 2017. EAGLET 1 has been launched on 3rd December 2018 on Space X Falcon 9 rocket from Vandenver Air Force Base California (USA).

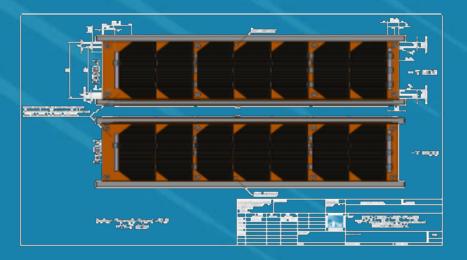
TRISAT mission

TRISAT is an educational 3U CubeSat mission lead by Maribor University from Slovenia funded by ESA

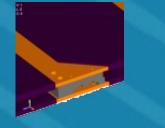
- Detect various vegetation patterns (green areas)
- Assess damage caused by natural disasters
- Detect volcanic dust.

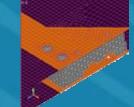

© Confidential information



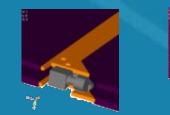


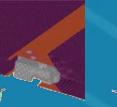
TRISAT mission



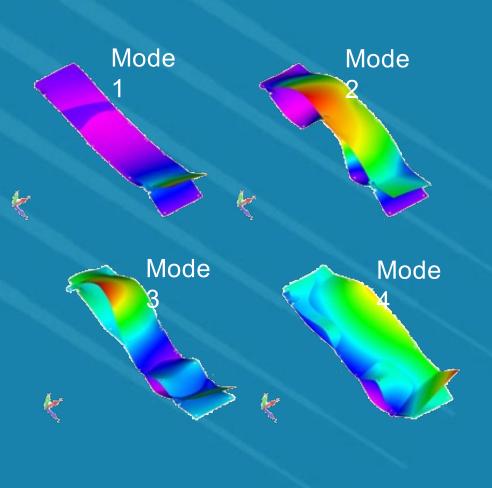


TRISAT mission




Simulations - FEM

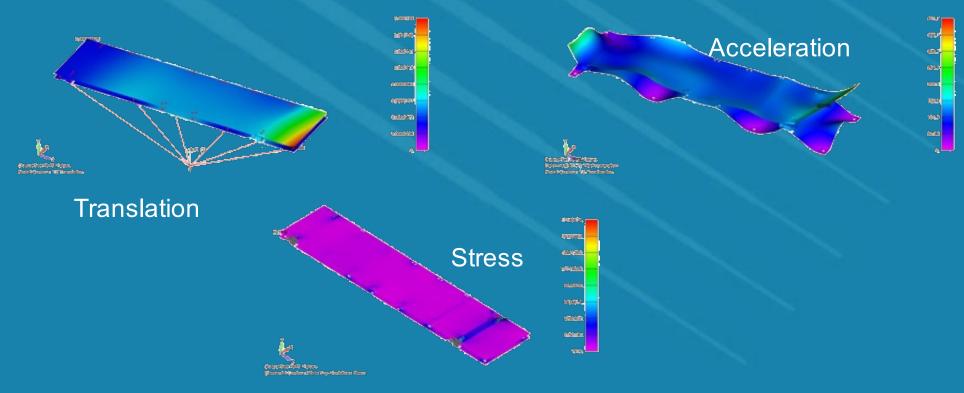
© Confidential information


TRISAT mission

Simulations - FEM

Modal analysis

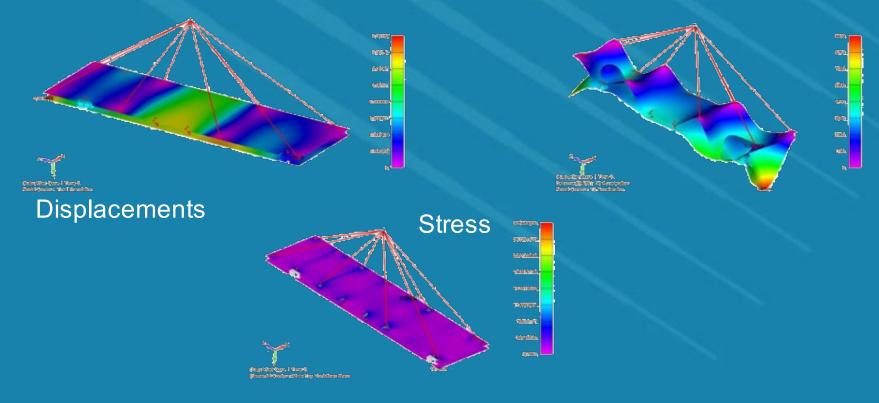
Nº Mode	Frequency (Hz)
1	220
2	226
3	346
4	409
5	449
6	517
7	558
8	645
9	704
10	779



TRISAT mission

Simulations - FEM

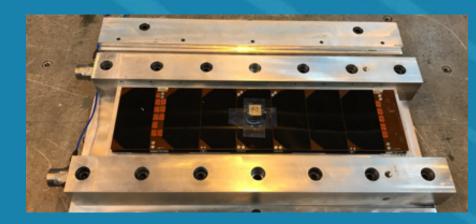
Random vibration response

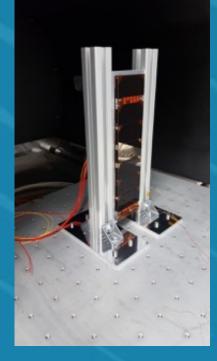

TRISAT mission

Simulations - FEM

Shock response

Acceleration





TRISAT mission

Manufacturing of engineering model

TRISAT mission

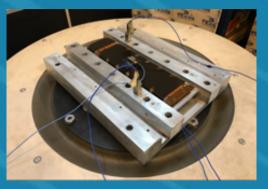
Test plan

Mechanical and vibration tests: (GSFC-STD-7000A standard, NASA GEVS levels.) sinusoidal vibration random vibration shock loads resonance survey test

Thermal and vacuum test: thermal cycling at low pressure conditions (-80°C/+135°C, 10⁻⁵-10⁻⁶ mbar).

Deployment tests: -20°C / +60°C, 10⁻⁵-10⁻⁶ mbar.

Visual inspection and electric performance.


TRISAT mission

Test plan

<u>Mechanical test – sinusoidal vibration</u> Mechanical test levels are designed under GSFC-STD-7000A

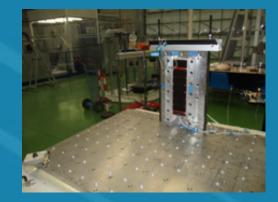
Test	Sinusoidal vibration		
Direction	X, Y, Z		
Sweep rate	2 oct / min / axis		
Profile	Frecuency range [Hz]	Qualification levels (0-peak) [g]	Acceptance levels (0-peak) [g]
	5 – 45	1,0	0,8
	45 – 110	1,25	1,0
	110 – 125	0,25	0,20


TRISAT mission

Test plan

Mechanical test – random vibration

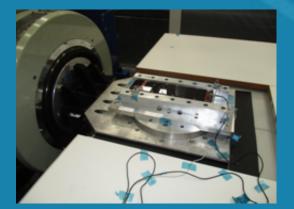
Test	Random vibration	
Direction	X, Y, Z	
RMS acceleration (g _{RMS})	14,1	
Test duration	120 s / axis	
Profile	Frecuency [Hz]	ASD level [g ² /Hz] / Qualification
	20	0,026 g ² / Hz
	20-50	+6dB / oct
	50-800	0,16 g ² / Hz
	800-2000	-6dB / oct
	2000	0,026 g ² / Hz


TRISAT mission


Test plan

Shock test

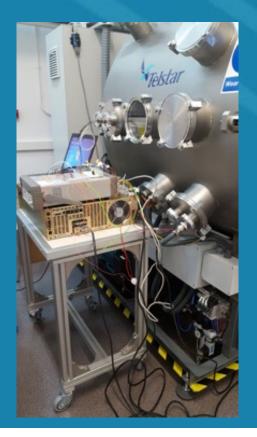
Test	Shock loads	
Direction	X, Y, Z	
Q factor	10	
Number of shocks	2 / axis	
Profile	Frequency (Hz)	Amplitude (g)
	100 - 1600	30 - 2000
	1600 - 10000	2000

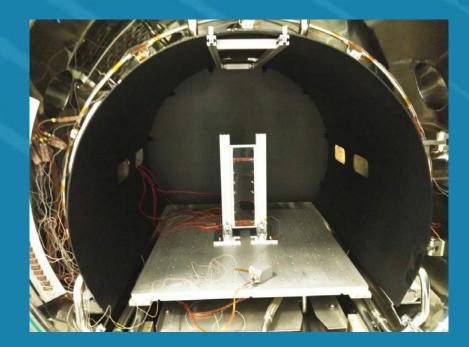

TRISAT mission

Test plan

Mechanical test – resonance survey

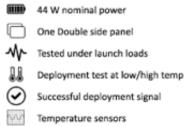
Test	Resonance survey	
Direction	X, Y, Z	
Туре	Harmonic	
Sweep rate	2 oct / min / axis	
Profile	Frequency (Hz)	Amplitude (g)
	5-2000	0,4

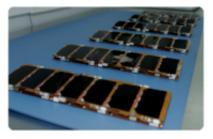



TRISAT mission

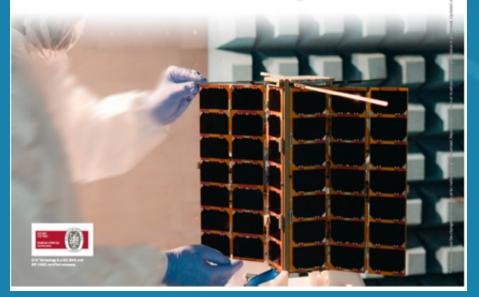
Test plan

TVAC test – cycling +135°C/-80°C, deployment test -20°C / +60°C


© Confidential information LEO Constellation projects



∆ spire


GEMINI SPACE PANEL Double Deployable Solar Panels for 3U Cubesats Designed by SPIRE GLOBAL Manufactured by DHV Technology

TRL 9 – Proven at LEO constellation level

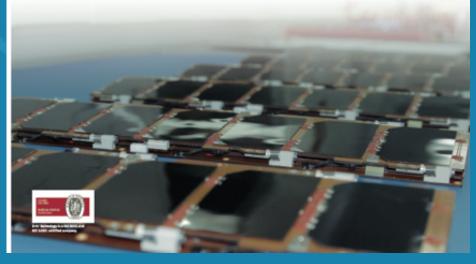
Www.dhvtechnology.com Parque Tecnológics de Ardelucía, Ac Jaen López Peliater 21, 25595, Milaga, Spain 00 34 951 956 837 dhv@chvtechnology.com

GEMINI SPACE PANEL

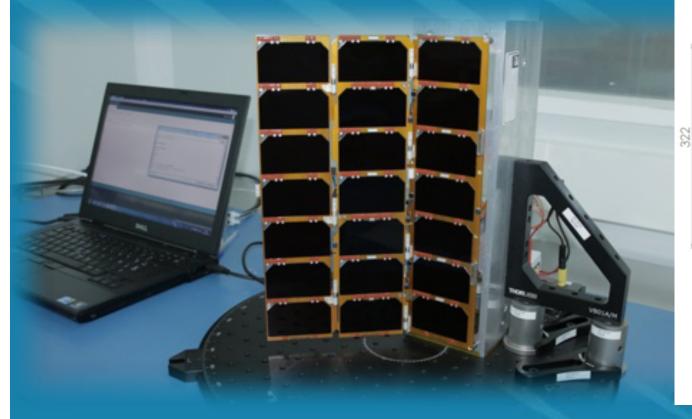
∆ spire

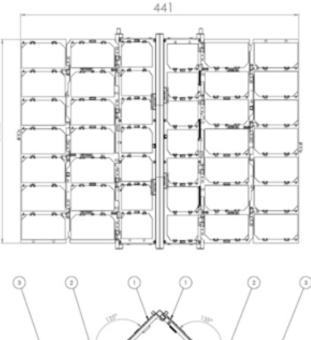
Double Deployable Solar Panels for 3U Cubesats Designed by SPIRE GLOBAL Manufactured by DHV Technology

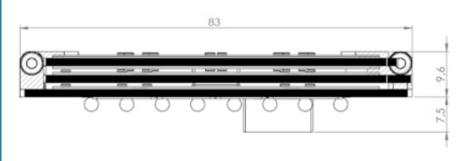
Features

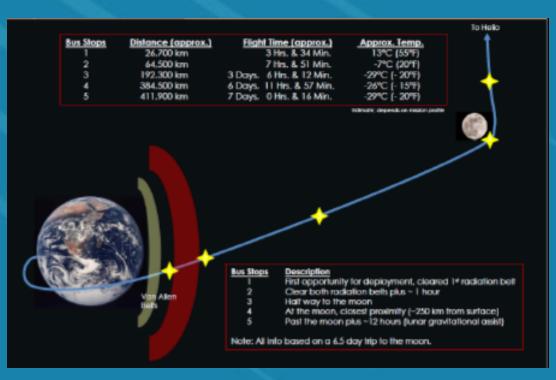

Solar panel parameters	3U (double deployable)
Power (AMO WRC) 1367 W/m ² ; T = 28 °C	29.6W (4 x strings)
Max Current (A)	1.7A (4 x strings)
Max Voltage (V)	17.3V (1 x string, 7 x cells)
Standard configuration	754P (7 cells x 4 strings)
Temperature sensor	LM335
Mass (g)	410 ± 10 g
Total thickness in stowed position (mm)	9.6 ± 0.2 mm
Deployed position (deg)	195°

Manufacturing


Assembly and integration process Quality control process in all stages Manufacturing in a cleam room ISO 8 level


In mass production for satellite constellations


Testing and qualification capabilities under request


ArgoMoon mission – Argotec

6U CubeSat platform.

Built by Argotec and coordinated by Italian Space Agency.

Secondary payload of Exploration Mission 1 of SLS from NASA.

13 missions as secondary payload

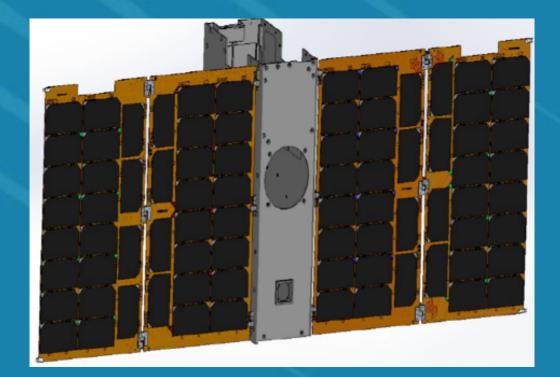
ArgoMoon mission – Argotec 6U CubeSat platform.

Built by Argotec and coordinated by Italian Space Agency.

Secondary payload of Exploration Mission 1 of SLS from NASA.

13 missions as secondary payload

ArgoMoon mission – Argotec 6U CubeSat platform



80 W BOL

TRL 8

Vibration, Shock, Vibro Acoustic and TVAC tests.

Launch is scheduled for Q1 2020

ArgoMoon mission – Argotec 6U CubeSat platform

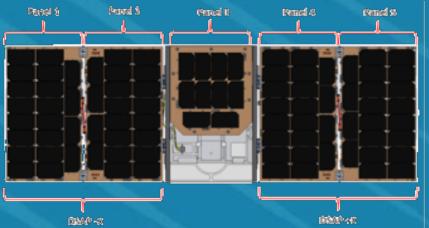
80 W BOL

TRL 8

Vibration, Shock, Vibro Acoustic and TVAC tests.

Launch is scheduled for Q1 2020

ANGELS mission


Angels mission – NEXEYA France & CNES 12U CubeSat platform

90 solar cells **108 W BOL**

TRL8 (Q1 2019) TRL 9 (Q3 2019) DAAP +R

Vibration, Shock, and TVAC tests.

Launch is scheduled for Q3 2019

© Confidential information

From 6th August 2018, ISIS – Innovative Solutions In Space and DHV Technology are partners on Solar Panel Solutions.

This partnership will combine the expertise of ISIS as leading CubeSat and nanosatellite manufacturer and DHV's specialism in space-grade solar panels for high power satellite solutions that ISIS develops for its customers, enabling advanced applications ranging from hyper-spectral imaging to machine-to-machine communications. The DHV solar panels will be compatible with ISIS' latest 3U, 6U and 12U CubeSat platforms, as well as the larger and new 'XL' variants up to 16U satellites.

Partners

© Confidential information

SECRETARIA DE ESTADO DE DEFENSA

SSSIF 2020

SPANISH SMALL SATELLITES INTERNATIONAL FORUM 2020

Workshop for small satellites designers, technicians, developers & launchers

ORAL PRESENTATIONS + POSTERS AREA DISCUSSION PANELS EXHIBITION AREA SPONSORSHIP OPPORTUNITIES SOCIAL AND NETWORKING PROGRAM

www.sssif.com info@sssif.com February 2020 25.26.27

Acknowledgement

Contact us

• Web:

www.dhvtechnology.com

• E-mail:

dhv@dhvtechnology.com

• Address:

Parque Tecnológico de Andalucía Av. Juan López Peñalver, 21 29590 Málaga (Spain)

LET US GIVE POWER TO YOUR SPACE MISSION !