

2019 CalPoly CubeSat Developer's Workshop & Conference

Steven A. MacLaird ("Steve")

Sr. VP, Gov't & Industry Strategy + 1 703.231.6335 maclaird@omg.org Developing CubeSat Model Based Systems Engineering (MBSE) & Standards for Space (Ground & On Orbit)

April 22, 2019

OMG® & OMG Programs

Software / Hardware Standards319 Organizations; 60+ Universities

Addressing IT standards for more than two dozen verticals, including: C4I, Communications, Finance, Healthcare, E-Government, Space, Industrial Internet of Things, etc.

The mission of the Object Management Group (OMG) is to develop technology standards that provide real-world value for dozens of vertical industries. OMG is dedicated to bringing together its international membership of end-users, vendors, government agencies, universities and research institutions to develop and revise these standards as technologies change throughout the years.

Industrial Internet of Things
216 Organizations
(Industrial Internet of Things)

726 Organizations – 8 Paid Sponsors

Cost = Free on Registration

(Cybersecurity Through ID'g Common Weakness

Enumerations (CWE)

Who is OMG?

- One of the largest and longest-standing not-for-profit, open-membership consortia developing and maintaining computer industry specifications.
- Continuously evolving to remain current while retaining a position of thought leadership.
- Long-term maintenance of proven standards

About OMG

Founded 1989

International standards development organization

225+ specifications

325+ member organizations worldwide

11 specifications ratified as ISO standards

OMG Vertical Markets

Standards are developed by OMG using a mature, worldwide, open development process. With more than 25 years of standards work, the OMG one-organization, one-vote policy ensures that every vendor and end-user, large and small, has an effective voice in the process.

Finance

Military

Government

Retail

Healthcare

Robotics

Manufacturing

Space Exploration

Who Are OMG'ers?

ACORD

Adaptive

Airbus Group

AIST

Amergint

Appian

ASMG

BAE Systems

Benchmark Consulting

Boeing

Carnegie Mellon Univ.

CA Technologies

CEA

Cisco Systems

Deere & Company

Dell Technologies

Diebold Nixdorf

European Space Agency

FICO

Ford Motor Company

Fujitsu

Georgia Tech

Genesco

Goldman Sachs

Holocentric

iGrafx

IBM

JARA

Johns Hopkins

Kongsberg Defence

Lockheed Martin

Mayo Clinic

MEGA International

MicroFocus

Microsoft

MITRE

NASA

NIST

No Magic

NOAA

Northrop Grumman

OCI

Oracle

Peraton

Perspecta

Petrosoft

PTC

QualiWare

Real Time Logic

RTI

Salesforce.com

SAP SE

Seiko Epson

Siemens

Software AG

Sparx Systems

State Street

THALES

The Aerospace

Corporation

Thematix

Twin Oaks

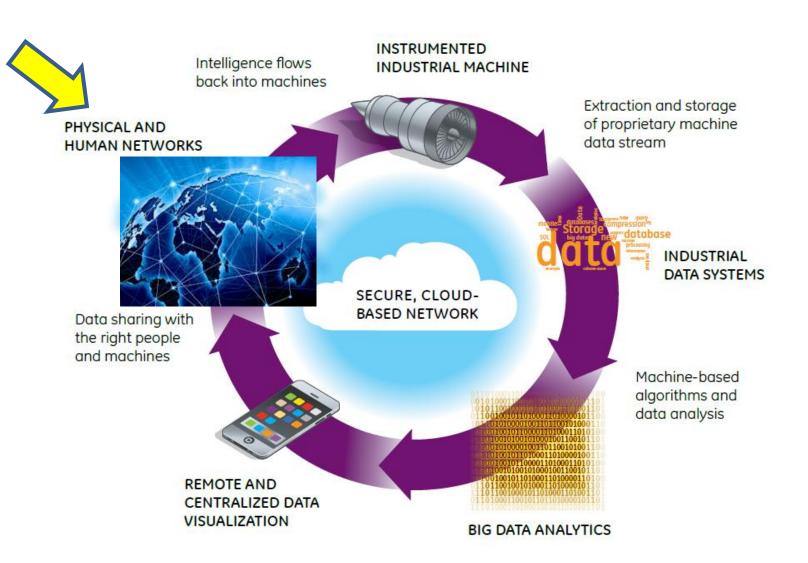
Ulta Beauty

Vitech Corporation

Innovation Impacts

1960 — Jet performance data is downloaded by eyes & hand

2015 — Jet performance data is downloaded by hand



2017 — Jet Performance Data is Downloaded Wirelessly on the Fly & Performance Modified in Flight

A New Industrial Revolution With Multiple Impacts

Causing the Increased Need to address:

- Standards (OMG)
- ➤ Data Residency Challenges & Cloud Best Practices (OMG)
- ➤ Artificial & Actionable Intelligence (OMG)
- > Ontologies
- ➤ IoT Architecture & Security (IIC)
- ➤ Software Quality (CISQ)

Targeting open standards lowers Life-Cycle costs, Reduces Risk & Increases Resiliency and Returns on Investment (ROI) through:

- Increased Quality (Specification, Designs and Implementation)
- Vendor Neutrality Specifications & Increased Competition
- Increased Flexibility, Adaptability and Agility
- > Higher Levels of Innovation
- Increased Levels of Interoperability
- More Efficient Use of Existing Resources
- Access to a larger and better trained labor pool
- OMG Standards & Models are taught in Comp Science & Cyber Security programs (community colleges as well as 4-year schools).
- Reduces risk as well as cost and improves overall resultant product(s) by modeling behaviors of systems

Open Standards enable users to focus on unique business/operational needs rather than common technical challenge(s)

What's the Value?

Workforce flexibility	Interoperability	Process optimisation
Standard, best practice methods, inputs, and outputs ↓ Flexible distribution of tasks around workforce	Standard interfaces ↓ Flexible distribution of processes and information + Commodity services	Best practice, repeatable processes ↓ Optimisation (time, quality, cost) of flow of components and tooling
DoDAF (aka Unified Architecture Framework (UAF)) in EA practice	CORBA, DDS, SCA, etc.	Modelling in service delivery (BPMN, UML, SysML) Ground Stations (XTCE, XUSP, GEMS, SOLM, C2MS)

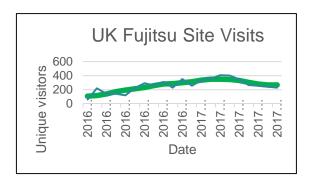
Ways to Value from Standards & Standards Bodies

Standards Body offers:	Business gets value by:	Example:	Actions to take:
Access to latest industry standards, techniques, etc.	Using IP from standards bodies internally, and visibility of new industry trends	UAF used in internal EA framework and EA skills development.	 Active engagement by internal process owners Promotion to internal technical communities
Publication and presentation platforms	Demonstrating capability and influencing the marketplace	Presentations delivered to conferences Own IP becomes industry best practice	 Present at conferences and other events Propose IP to standards, white papers etc.
Networking opportunities	Visibility and knowledge of customers and partners	Working group membership maintains a relationship with important customer or partner	 Meet stakeholders Ensure company engagement is visible

Industry Research Findings:

ISO study [1]: Profit contribution from standards ranges from 0.15% to 5% BSI study [2]: increase in turnover from using standards of between 1.7% and 5.3%

- ISO, 2014, "Economic benefits of standards",
 - http://www.iso.org/iso/ebs_case_stu dies_factsheets.pdf
- 2. British Standards Institution, June 2015, "Economic benefits of standards research reports", http://www.bsigroup.com/en-GB/standards/benefits-of-using-standards/research-reports/


1 - Practical Things Can be Counted

Measuring Value

	Business gets value by:	What to count:
1.	Using IP	 Number of internal methods, guidelines, templates etc. Number of projects using the standards or methods Number of people trained / certified
2.	Demonstrating business capability	Number of presentationsNumber of IP submissions (white papers etc.)
3.	Networking with customers and partners	Number of stakeholders metNumber of opportunities / suspects

Cost model Item	Purpose	Fo	recast GBP	F	orecast JPY
Staff 1	Headcount cost	£	243,529	¥	31,658,770
Staff 2	Headcount cost	£	102,126	¥	13,276,338
Develop BP Collateral	SME Project costs for funding r&d development	£	32,386	¥	4,210,193
Support rollout BP	Project costs for funding rollout & promotion	£	6,000	¥	780,000
BP promotion	Travel and accommodation costs for promotion	£	12,140	¥	1,578,210
SME meetings - travel and accommodation	SME Travel and accommodation costs for r&d	£	8,171	¥	1,062,221
Miscellaneous expenses	Any other expenses	£	57,367	¥	7,457,726
Sub total	Sub total	£	461,719	¥	60,023,458
Contingency	Contingency	£	46,627	¥	6,061,480
TOTAL	Total	£	508,346	¥	66,084,939

2 - Estimate the ROI Case Study

Benefits model		
Site visits	3570	
Use rate	50%	
Savings per use	7.5h	
Hourly rate	7000 Yen/hr	
Benefits (Yen)	93.7 M Yen	
Benefits (GBP)	0.72 M GBP	

What's the ROI:	Benefits	0.72 GBP (0.93 US \$)
	Cost	0.51 GBP (0.66 US \$)
	ROI	41%

Attributed to: Chris Frost

Fujitsu Distinguished Engineer

CubeSats Are To Small for Standards

- Three F-18 Fighters drop over 100 Drones
- Drones Inter-react with Each other on the Fly & Communicate with
 - Each Other,
 - Ground Assets, and
 - Sea Assets
 - Command Assets
- Man "On the Loop" Versus "In the Loop"
- Demonstrates "Actionable Intelligence" versus "Artificial Intelligence"

Full 60 Minutes Segment:

https://www.cbs.com/shows/60_minutes/vide o/rMzZSMeETU_4wH7yAEMkTcSim_MOXD6f/t he-coming-swarm/

Used 18 OMG Standards to Perform Testing Mission

https://youtu.be/NSxFDjPAV7M

OMG's Space Domain Task Force (SDTF)

The OMG Space Domain Task Force (SDTF)

Space professionals committed to greater interoperability, reduction in costs, schedule, and risk for space applications through increased standardization

- > The SDTF works cooperatively with the CCSDS to ensure consistent space standards are developed.
- ➤ OMG's Space DTF is Fast But Not To Fast : 9 24 months to deliver a standard
- Final result will be specifications and interfaces NOT products
 - > Implementations of OMG specifications by users
 - Those implementing specifications need not be OMG members
 - Specifications are freely available
- Collective wisdom broad range of input
- Standards/Specifications based upon Gov't & Industry consensus

Specifications Freely Available

- XTCE (XML Telemetry and Command Exchange) (1.1)
- GEMS (Ground Equipment Monitoring Service)
- <u>SOLM</u> (Spacecraft Operations Language Metamodel)

Work-In-Process

- XTCE 1.2 Revision Task Force deadline March 2018 (Finalization by June 2019)
- <u>C2MS</u> (Cmd & Control Mission Services) in Finalization Task Force expected to be complete June 2019

 CubeSat Systems Reference Model (CSRM) (INCOSE & OMG Initiative)

Future Work being Considered

- · Ontology, archiving, display, cyber
- Ground Station Ontology (Spacecraft Operations Language Metamodel),
 - http://www.omg.org/hottopics/spacecraft-ground-systemsrfi.htm
- · Data Archiving,
- Display Page Exchange
- Cyber Security

- Data Delivery Services (DDS)
- Information Exchange Framework (IEF)
- Cyber Security for Front Line Systems
- Secure Networking Communications (SNC) Middleware and Related Services (MARS) Working Group
 - Space Telecommunications Radio Services (STRS) and
 - Hybrid Adaptive Network (HANw)
- Alarms & Event Notification and Scheduling
- Telescope Reference Model

XTCE & XUSP Status

XCTE

- XTCE 1.2 RTF has dispositioned 244 of the issues submitted.
- ALL of the remaining issues closed in ballot on Feb 12th and resolved.
- The resulting revised schema will be largely forward compatible with existing XTCE 1.1 documents and members of the RTF are developing tools to transform forward incompatibilities, e.g. element name changes
- RTF report submitted and OMG Architecture Board Approved Sep 2018
- XTCE 1.2 Specification Published Oct 2018
- XTCE 1.1 is being used by military, space agency, and commercial space programs as an open exchange format and upgrading to 1.2.

XUSP - a tailored version of XTCE to support CCSDS formats and typical field constraints

- XUSP RTF is awaiting publication of XTCE 1.2, since it is a defined subset profile of the XTCE specification. XUSP is a tailored version of XTCE to support CCSDS formats and typical field
- No pending issues, but after publication of XTCE 1.2 an issue will be submitted to address compatibility.

Command & Control Message Specification (C2MS)

What is it?

- A set of standard message formats for the exchange of information for C2 functions
- About 30 messages covering areas like events, telemetry frames or parameters, directives, navigation, commanding, and more.
- Aligned with key interfaces normally found in today's commercial C2 system products

Where did it come from?

- NASA's Goddard Mission Services Evolution Center (GMSEC) Interface Specification document provided the primary source material
- NASA will retire its ISD when C2MS is published
- Note: ONLY the message formats are being standardized, not the API or components

What is the status?

- The same of
- NASA has worked with the Space Domain Task Force on C2MS for the past year and submitted the required materials for consideration in mid-February 2018
- OMG Architecture Board Approved in Sep 2018 and in Finalization Task Force for Completion
- Is available for specification download by March 2019 to OMG Members and will be finalized in June 2019

Fits on a Laptop

OMG Space DTF (SDTF) Future Backlog

- Telemetry Display Page Definition Exchange
 - No draft RFP exists, yet, just conceptual. Some interest, but this is a difficult problem.
- Ground Data Delivery Interface
 - No draft RFP exists, yet, but has been discussed as a companion spec to GEMS for delivering binary mission and housekeeping data within a ground station.
- Alert Management System
 - US Air Force EGS adopted the OMG C4I Alert Management Service (ALMAS) specification rather than request a specific space domain specification
- Goddard Core Flight Services (Cfs)
 - Goddard has several technologies with more general space industry applicability that are waiting for the results of the C2MS RFC from NASA for a possible path forward.
- Spacecraft Operations Ontology
 - In works, tough to do, about 10 ontology's being worked on now and being expanded (180 requested)

CubeSat Systems Reference Model (CSRM)

The International Council of Systems Engineers (INCOSE)

- Utilized OMG's Systems Modeling Language to Develop
- > A CubeSat Systems Reference Model that provides information
 - > For universities, students, businesses and developers of CubeSats
 - Provides Behavior modeling between subsystems
 - > Validation & Verification (V&V) processes
 - Coordination points for launch

Model Based Systems Engineering (MBSE) [1]

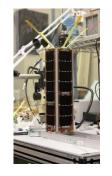
Formalized application of modeling to support requirements, design, analysis, validation, and verification

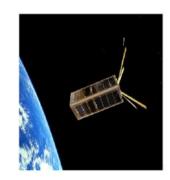
Systems Modeling Language TM (SysMLTM) [2]

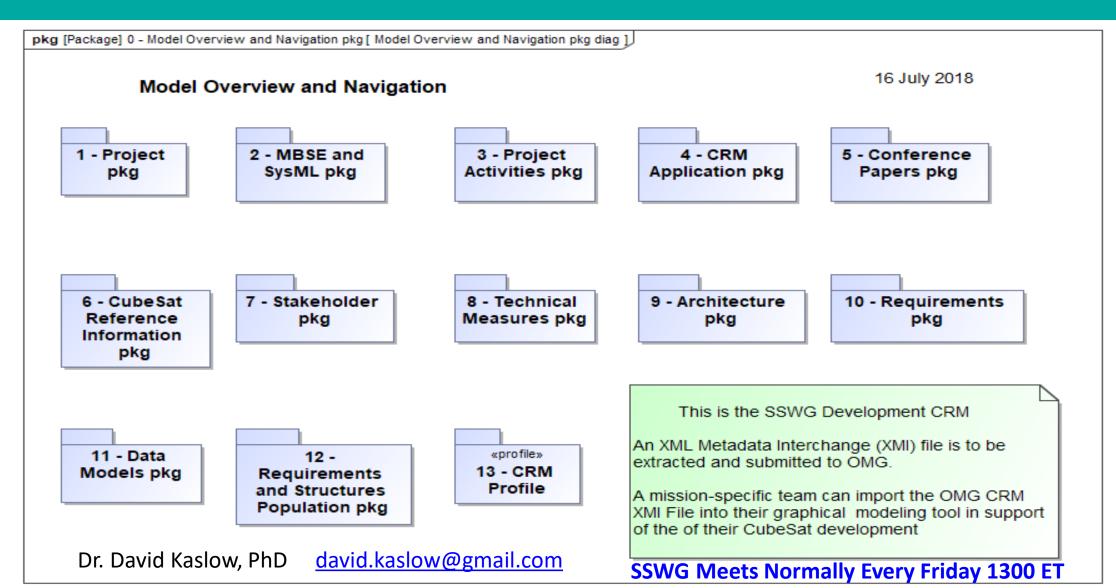
A graphical modeling language for modeling complex systems including hardware, software, information, personnel, procedures, facilities and Coordination's

Systems Engineering Methodology

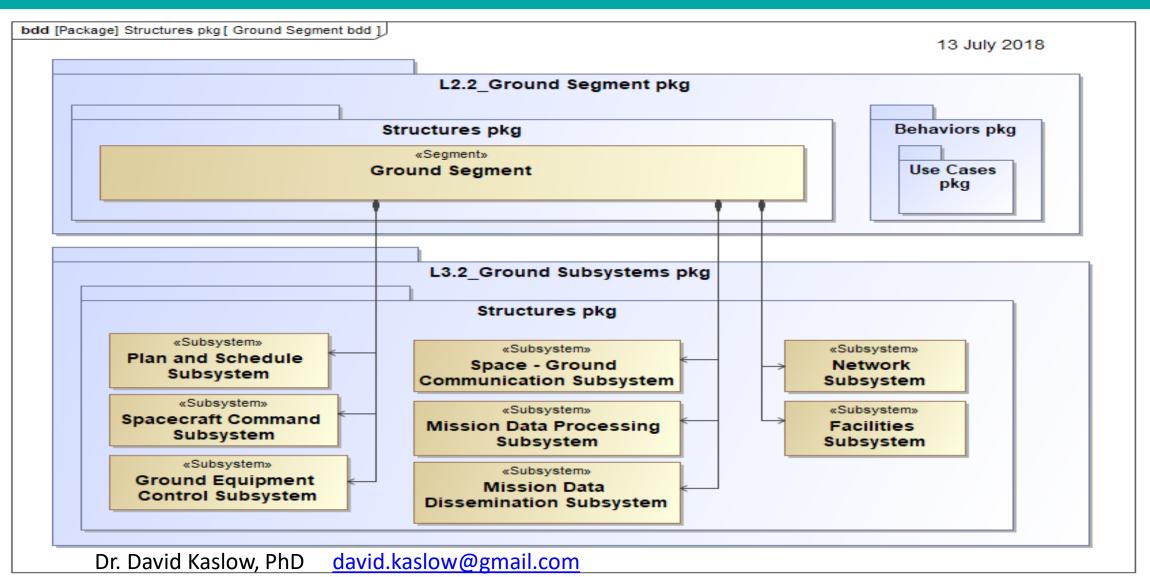
System Modeling Tools


Interfaces with Other Models


Purpose: To Provides a CubeSat Systems Reference Model that CubeSat Teams can use as a starting point for their mission-specific CubeSat & Develop into a OMG Standard


CubeSat Systems Reference Model (CSRM) (Continued)

- SysML Model Elements that can be populated to specify the <u>Logical Architecture</u> of a CubeSat Enterprise System (Space & Ground)
- Logical Architecture decomposes the system into components that interact to satisfy system requirements
- The components are abstractions of physical Components that perform system functionality but without imposing implementation constraints
- The CSRM is systems engineering agnostic
- A mission specific team can import the CSRM into their graphical modeling tool to initiate their process for architecting, designing and developing their mission specific CubeSat Model (MCM)
- The MCM will be a repository for the systems engineering artifacts created by the mission specific Team


CubeSat Systems Reference Model (CSRM)

Model Overview & Navigation Package

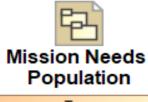
CubeSat Systems Reference Model (CSRM) Ground Segment Structures Package

CubeSat Mission Stakeholders & Req'ts

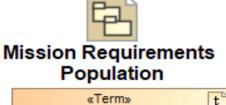
pkg [Package] 7.3.0 - Mission Stakeholders and Requirements - Basic Concepts and Population pkg [Mission Stakeholders and Requirements - Basic Concepts and Population - pkg diag]

Mission Stakeholders and Requirements - Basic Concepts and Population

23 July 2018



Mission Stakeholder Concerns Population



Mission Requirement

Dr. David Kaslow, PhD <u>david.kaslow@gmail.com</u>

Data Distribution Service (DDS)

Kennedy Space Centre **NASA Orion Launch Control Systems** Center **First Launch** 5 Dec 2014 DDS - Based **SCADA System 300 K Points @** 400 K Msgs/sec To 300 Separate **Decision Points** To Make **Launch Decision**

https://www.omgwiki.org/dds/

Software Based Communications DoD's SCA & NASA's STRS OMG's SNC

Standards Based Requirements Approach

OBJECT MANAGEMENT GROUP®

OMG UNIFIED ARCHITECTURE FRAMEWORK®

If Any of You Space Cat's Have Questions - You Can Be Directed To:

Steven A. "Steve" MacLaird (aka Da Dawg) SVP Government & Industry Strategy

Tel: +1-703-231 6335

OMG HQ - Needham, MA

Tel: +1-781-444 0404

Fax: +1-781-444 0320

maclaird@omg.org
https://www.omg.org
https://www.iiconsortium.org
http://www.it-cisq.org

Back Ups

CISQ/OMG Standards Process & Published Standards

Software Sizing - Published

- Automated Function Points
- Automated Enhancement Points

Software Structural Quality -Published

- Security
- Reliability
- Performance Efficiency
- Maintainability

Consortium for IT Software Quality (CISQ) Work Groups

Automated

Function Points

Reliability

Performance

Efficiency

Security

Maintainability

Defined

Measures

Deployment

Workshops

ISO

Fasttrack

OMG

Technical Debt - Published

- A new OMG® standard for measuring the future cost of defects remaining in system source code at release
- The cost to fix structural quality problems constitutes the principal of the debt, while the inefficiencies they cause until fixed, such as greater maintenance effort or excessive computing resources, represent compounding interest on the debt

For future development...

CISQ

Exec

Forum

- Extending the software quality measures to embedded and real-time systems, which is critically important for the Internet of Things (IoT)
- A measure of quality-adjusted productivity

The 22 CWEs in the Security Measure

CWE-78 OS Command Injection Improper Input Neutralization

CWE-79 Cross-site Scripting Improper Input Neutralization

CWE-89 SQL Injection Improper Input Neutralization

CWE-120 Buffer Copy without Checking Size of Input

CWE-129 Array Index Improper Input Neutralization

CWE-134 Format String Improper Input Neutralization

CWE-252 Unchecked Return Parameter of Control Element Accessing Resource

CWE-327 Broken or Risky Cryptographic Algorithm Usage

CWE-396 Declaration of Catch for Generic Exception

CWE-397 Declaration of Throws for Generic Exception

CWE-434 File Upload Improper Input Neutralization

CWE-456 Storable and Member Data Element Missing Initialization

CWE-606 Unchecked Input for Loop Condition

CWE-667 Shared Resource Improper Locking

CWE-672 Expired or Released Resource Usage

CWE-681 Numeric Types Incorrect Conversion

CWE-706 Name or Reference Resolution Improper Input Neutralization

CWE-772 Missing Release of Resource after Effective Lifetime

CWE-789 Uncontrolled Memory Allocation

CWE-798 Hard-Coded Credentials Usage for Remote Authentication

CWE-835 Loop with Unreachable Exit Condition ('Infinite Loop')

Robert Martin *MITRE*

Common
Weakness
Enumeration
cwe.mitre.org

