CubeSat Mission Success: Are We Getting Better?

Michael Swartwout, PhD

Parks College of Engineering, Aviation & Technology Saint Louis University

2019 CubeSat Developers' Workshop 23 April 2019

SAINT LOUIS UNIVERSITY

PARKS COLLEGE OF ENGINEERING, AVIATION AND TECHNOLOGY

20 Years (!?!?) of CubeSats 300

1000 CubeSats have flown in 20 years!

"I'll Take Potpourri for \$400, Alex"

- My definition of CubeSat: Anything that fits in a "standard" <u>container</u>
- Secret Sauce of CubeSats
 - Cheap launch
 - Willingness to aggressively trade scope to meet [fixed] schedule and cost
- Biggest Threats to CubeSats
 - Not trading scope against [fixed] schedule and cost
 - 1000 CubeSats is too big a number to ignore

P.S. My data is only as good as what you're willing to share CubeSat Developers' Workshop 2019

CubeSat by Mission Type

CubeSat Mission Status*, 2000-2018

* See previous note (i.e., I can only know what you share)

CubeSat Developers' Workshop 2019

Truth in Advertising

- I don't have that data ... nobody does
- Overheard at the 2018 NASA Smallsat Reliability Technical Interchange Meeting
 - Systems engineer, mid-sized contractor: "More than 90% of the failures I see on the ground or in space are not parts-related"
 - Technical engineer, small component supplier:
 "I second that"
 - Systems engineer, large contractor:
 "I third that"
 - The other 30+ engineers from four NASA centers, the DoD, several contractors and a lot of suppliers:

[general agreement and nodding of heads]

None of These Things are Quite Like the Others ...

Hobbyist

- No real experience in the field
- Building for fun & future profit
- Ad hoc practices

Industrialist

- Experienced builders of big spacecraft
- Building under gov't contract
- Standard space system practices, with some truncation

• Crafter

- Experienced builders of small spacecraft
- Working under contract
- Streamlined practices, experientially developed

(Smallsat) Constellations

- Providing a geographically-distributed service (imaging, comm)
- Mission can be met with an ad hoc (?!?) implementation of orbits
- Spacecraft/launch costs are effectively free (I did say "*effectively*")

CubeSat Developers' Workshop 2019

CubeSat by Developer Class

None of These Things are Quite Like the Others ...

Hobbyist

- No real experience in the field
- Building for fun & future profit
- Ad hoc practices
- Industrialist
 - Experienced builders of big spacecraft
 - Building under gov't contract
 - Standard space system practices, with some truncation

Crafter

- Experienced builders of small spacecraft
- Working under contract
- Streamlined practices, experientially developed
- (Smallsat) Constellations
 - Providing a geographically-distributed service (imaging, comm)
 - Mission can be met with an ad hoc (?!?) implementation of orbits
 - Spacecraft/launch costs are effectively free (I did say "effectively")

CubeSat Developers' Workshop 2019

CubeSat Developers' Workshop 2019

CubeSat Developers' Workshop 2019

What's Going On?

- Industrialists: You get what you pay for!
- **Crafters**: Failures appear to be a result of ambitious technology infusion *(i.e., acceptable losses)*
- Hobbyists:
 - Ad hoc procedures for design, integration, test
 - Lack of time spent on integration & test
 - Workmanship (?)
 - Uncaptured best practices?

Hobbyists: It's Hard to Improve, When You Don't Repeat!

The Plural of "Anecdote" is not "Data", but ...

- Possible reasons for DOA
 - Compressed development schedule leads to uncaught mistakes (software errors, mechanisms binding, inadequate power budget, nonrobust startup sequences)
 - Shock loads expose workmanship flaws (few hobbyists test for shock)
 - Underpowered RF system
 - Two or more recoverable errors "team up"
 - SEEs
- Sources of early failure
 - Environmental wear (thermal cycling, radiation effects)
 - Low margins (battery depth-of-discharge)
 - Long-term software instability

It's Not <u>All</u> Bad News ...

- Those that survive the first 90 days tend to stick around
 - PCSat (2001), XI-IV (2003), XI-V (2005)
 - Think of it as post-launch "burn-in" and end-to-end functional testing (!?!)
- Common characteristics of success
- Process, process, process!
- Development schedule with significant functional testing and margin
- Organizational robustness to staff turnover and mission failure
- Common features for on-orbit success: operational robustness
 - "Bulletproof" power-rich safe mode
 - Hard reset from the ground (bypassing flight software)
 - Flight software uploads
 - Lack of time-critical operational events

Acknowledgements

- Data Sources
 - Public: Gunter's Space Page (international launch log)
 - Public: Jonathan's Space Report (orbital elements)
 - Public: DK3WN Satblog (university/amateur operations)
 - Public: Union of Concerned Scientists (operational status)
 - Public: Program websites, conference presentations
 - Public: Bryan Klofas (communications/operational status)
 - Private: Personal communications (*hint, hint*)
- NASA NEPP (NNX17AJ46G and 80NSSC18K0637)
- Student research team: Samantha Carlowicz, Scott Elliott, Connor Highlander, Andie Kaess, Tinevimbo Ndlovu, Cody Powers, Patrick Sullivan, Adam Walker, Sean Walsh

CubeSat Mission Success: Are We Getting Better?

Michael Swartwout, PhD

Parks College of Engineering, Aviation & Technology Saint Louis University

2019 CubeSat Developers' Workshop 23 April 2019

SAINT LOUIS UNIVERSITY

PARKS COLLEGE OF ENGINEERING, AVIATION AND TECHNOLOGY