
Pathfinder Technology Demonstrator

"Enabling the Next Generation of CubeSat Missions"

CubeSat Developer's Workshop

April 23rd, 2019

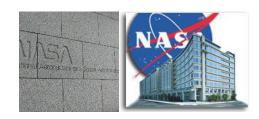
NASA Space Technology Mission Directorate
NASA Small Spacecraft Technology Program
NASA Ames Research Center | NASA Glenn Research Center

PTD Management and Governance

NASA Management

Program Executive: Christopher Baker, NASA HQ

Program Manager: Roger Hunter, NASA ARC


Deputy PM: Elwood Agasid, NASA ARC

Project SE: Darin Foreman, NASA ARC

Project Eng: John Hanson Ph.D., NASA ARC

Payload Lead: Fred Elliot, NASA GRC

Payload Lead: John Marmie, NASA ARC

Tyvak Management

Charles Player Todd Mosher

PTD Governance

PTD is being managed under NPR 7120.8.

NASA Research and Technology Program and Project Management Requirements

 7120.8 supports development and demonstration of enabling technologies that will be infused in future NASA missions.

PTD MISSIONS TIMELINE

	FY 2017			FY 2018			FY 2019			FY 2020			FY 2021				FY 2022							
C	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
STN	VID I		RATIC YLOA								PTD-	→	PTD-1 YDRO	s 🕶	PTD-2		PTD- TBIRI	-	PTD-	4	PTD	-5		

01/09/2017 ATP

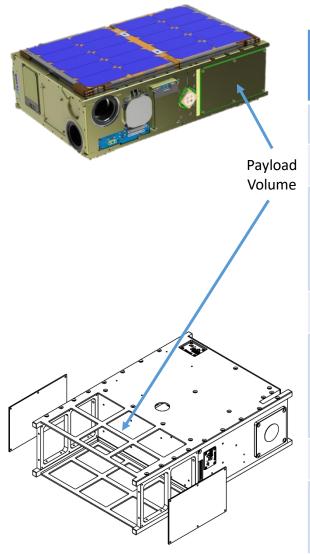
01/30/2017 Kick-Off

03/16/2017 System Requirements Review

07/20/2017 Delta SRR

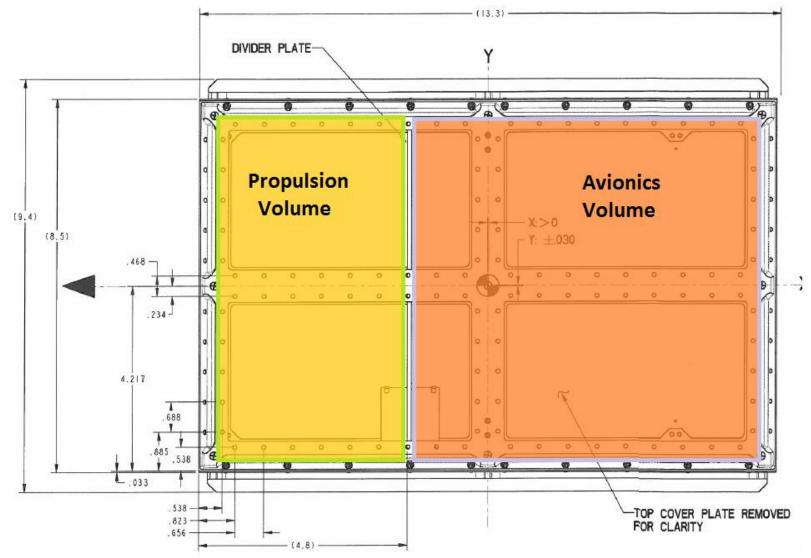
08/31/2017 PTD-1 PDR/CDR

09/27/2019 PTD-1 ORR/PSR


12/2019 PTD-1 Launch

Q2/2020 PTD-1 Flight Operations

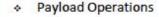
Spacecraft Characteristics



System Characteristics	
Size	6U (10 X 20 X 30 cm)
Mass	12 kg (includes 3kg for payload)
Payload Power	180 W Peak Power 45W Orbit Average Power 5W Survival Power
Communications	UHF/S-band
ADCS	3-Axis Stabilized120 arcsec Pointing5 arcsec Knowledge
C&DH Heritage	PROPCUBE
Payload Volume	209.5 mm (W) x 96 mm (H) x 145 mm (D) (~ 2.4 U)
Payload Comms	RS-422 Asynchronous

PTD Geometric View

*Notional design, TBS after RFP award

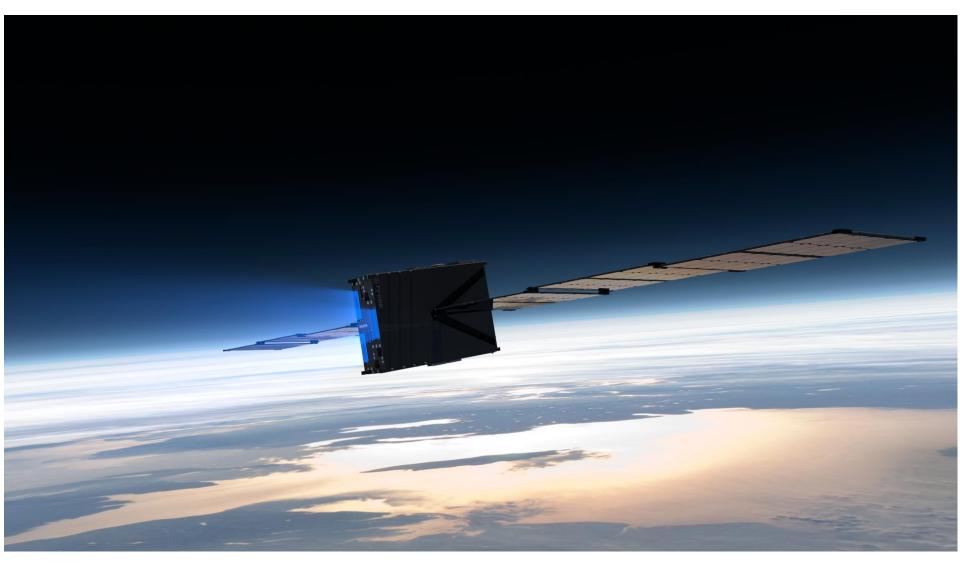


PTD-1: Operational Concept

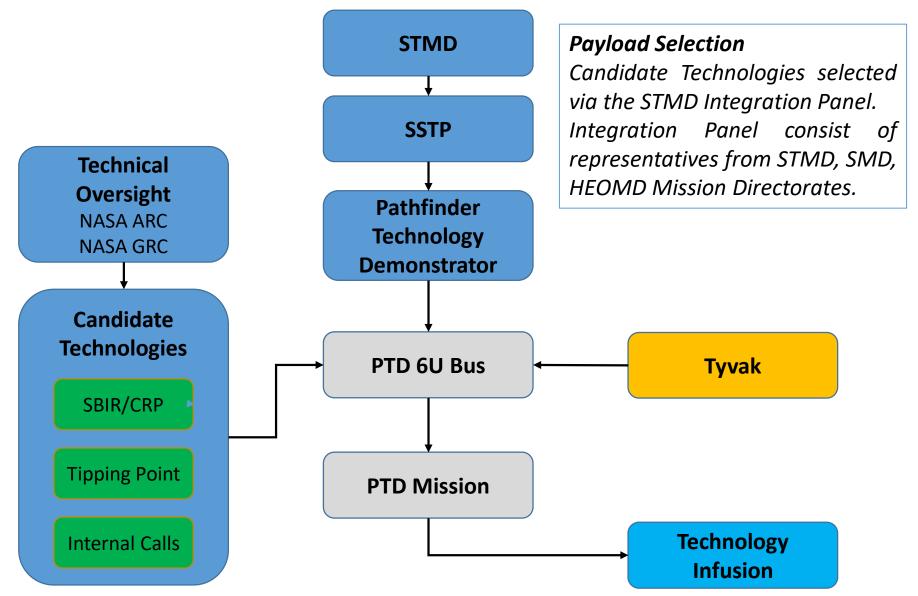
- Spacecraft Checkouts
 - Mix of automatic and manual checkouts
 - Star tracker alignment verification
 - GNC system performance verification
 - Solar Array performance verification
- Payload Checkouts
 - Power and verify connectivity
 - Enable Payload Self-Tests (if available)

- Slews to fixed orientation in local velocity frame
- Maintains constant orientation
- Enable Collection of payload data
 - GPS data for propulsive payload maneuvers
- Secondary Mission

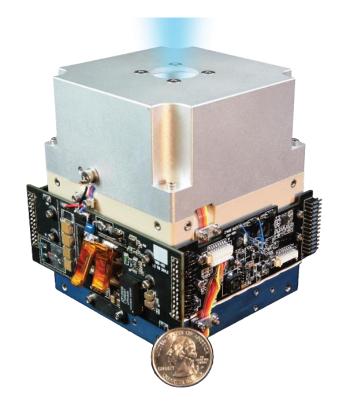
- Launch
 - Spacecraft powered off for launch, contained within deployer
 - Uncertainties in orbital insertion expected
- Deployment from Dispenser
 - Spacecraft boots up when physical inhibit switches are released
 - Significant body spin rates from deployer springs and Upper state rotation
 - UHF antenna and solar array deployment
 - ADCS-managed automatic detumble



- Spacecraft Disposal
 - Inhibit charging & solar array motion once all operations are completed
 - End of mission fuse
 - Consume / Vent all remaining propellant
 - Discharge all energy storage devices
 - Spacecraft renters within L-25 years


PTD – 1 PAYLOADS

PTD Mission Development

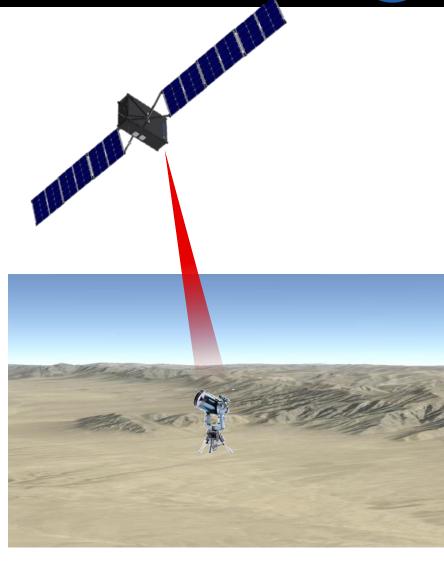


TUI HYDROS H₂O THRUSTER

Metric	Accommodation Interface Goal					
Thrust	1 N					
I _{sp}	300s					
Power	7 W Orbit Averaged Power					
Mass	1 kg (Dry)					
Volume	1000 cc (1U)					
Conditioning	6-36V unregulated DC					
Communications	RS422 / SpaceWire					
Environment	Qualified to GEVS					
Location	Face Mounted / CG-Aligned					

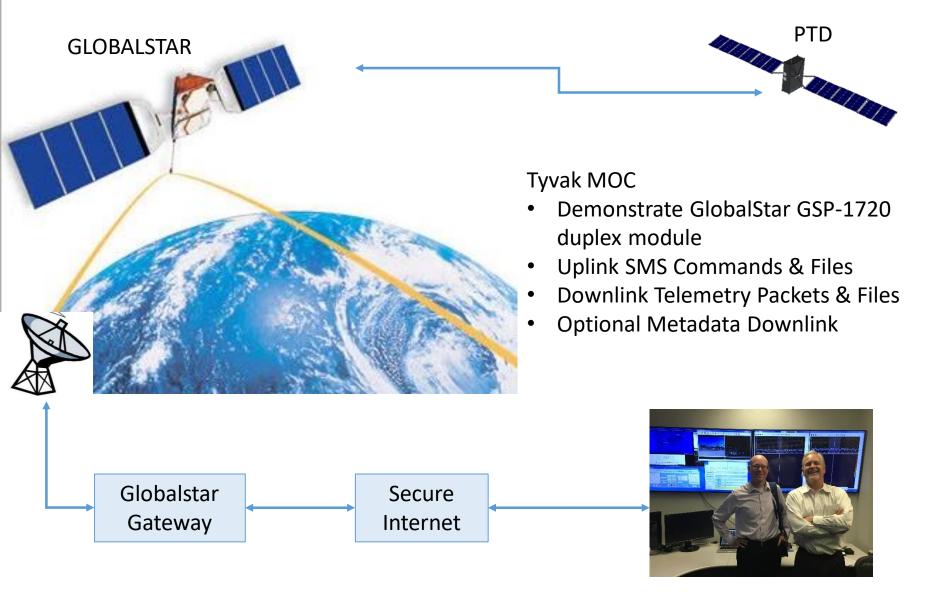
Blue Canyon Hyper-XACT

- Extension of XACT ADCS module capabilities to higher performance, lower risk posture missions requiring low jitter 3-axis reaction wheel control
- Hyper-XACT sensor/actuator suite
 - 1 Nano Star Tracker
 - 3-4 Reaction wheels
 - 3 Torque rods
 - 1 Magnetometer
 - 1 IMU
 - 1-4 Quad-diode coarse sun sensor packages
- Major enhancements from baseline XACT in the following areas:
 - Improved attitude determination error, attitude control error
 - Improved high frequency jitter performance
 - Enhanced lifetime: radiation sensitivity and mitigation
 - Multi-layer fault protection
 - Mission life
- Performs high-level commanded behaviors including multiple pointing reference frames: Inertial, LVLH, Earth-Fixed Target Tracking, Solar, Moon, etc.


Lincoln TBIRD Optical Terminal

Metric	Target					
Form-factor	CubeSat					
Data Rate	200 Gbps					
Daily Data Rate	5-10 TB/day					
Ground Station Low cost 30 cm terminal						
High rate buffer & transceiver electronics						

Dr. Donald Cornwell, NASA SCaN (donald.m.cornwell@nasa.gov)


Dr. Bryan Robinson, MIT Lincoln Lab (brobinson@ll.mit.edu)

PTD Globalstar Comm Network Evaluation

PATHFINDER TECHNOLOGY DEMONSTRATION

