TEMPEST-D July 2018

28 and Counting: JPL's Involvement in Cubesat Missions

Tony Freeman,

Jet Propulsion Laboratory, California Institute of Technology

Cubesat Developer's Workshop, 2019

28 and Counting Motivation

Why is JPL involved in cubesat missions?

- Fast Infusion of New Technology
- High Value Science Missions
- Miniaturization of Instruments
- More Flight Opportunities
- To "Dare Mighty Things"
- Lay down tracks for others to follow

Involvement began in 2011 (or did it?)

JPL-involved Cubesat Timeline

Example RoadMap for Miniaturizing Instruments

Cubesat-sized Instruments – 2012 and 2019

Technology	Selva* and Krejci, 2012	Freeman 2019	Justification
Atmospheric Chemistry Instruments	Problematic	Feasible	PICASSO, IR sounders
Atmos Temp and Humidity Sounders	Feasible	Feasible	CiRAS
Cloud Profile and rain radars	Infeasible	Feasible	RainCube
Earth Radiation Budget radiometers	Feasible	Feasible	SERB, RAVAN
Gravity Instruments	Feasible	Feasible	Need a demo mission
Hi-res Optical Imagers	Infeasible	Feasible	Planetlabs
Imaging microwave radars	Infeasible	Feasible	Ka-Band 12U design
Imaging multi-spectral radiometers (Vis/IR)	Problematic	Feasible	AstroDigital
Imaging multi-spectral radiometers (μ Wave)	Problematic	Feasible	TEMPEST-D, TROPICS
Lidars	Infeasible	Feasible	Lunar Flashlight
Lightning Imagers	Feasible	Feasible	RaioSat
Magnetic Fields	Feasible	Feasible	InSPIRE
Multiple direction/polarization radiometers	Problematic	Feasible	HARP Polarimeter
Ocean color instruments	Feasible	Feasible	SeaHawk
Precision orbit	Feasible	Feasible	CanX-4, -5
Radar altimeters	Infeasible	Feasible	SNoOPI 12
Scatterometers	Infeasible	Feasible	GNSS refl. (CyGNSS)

JPL Technologies and Capabilities

IRIS Radio

Deployable Reflector

Sphinx C&DH

DSN Communications and Navigation Protocols

OnBoard Data Reduction

Jet Propulsion Laboratory California Institute of Technology

CubeSat Development Lab

ISARA – 100 Mbps Downlink Capability

Slide courtesy Richard Hodges and the ISARA team

- ✓ First reflectarray antenna flown in space
- ✓ First high gain antenna integrated with solar panels (low mass delta)
- ✓ First calibrated antenna gain measurement performed from space – 33.4 dB peak
- ✓ First 100 Mbps CubeSat (3U) telecom downlink capability (from LEO)

14

14

Signal Power Measurements

RainCube – first cubesat radar

Slide courtesy Eva Peral and the RainCube team

- ✓ First radar cubesat (6U)
- ✓ Vertically sounding, precipitation measurements
- ✓ 0.5 m diameter Ka-Band antenna (1.5U when stowed) Tendeq license
- ✓ 2.5U radar electronics

✓ First science data August, 2018

ASTERIA – hunting exoplanets one star at a time

PI: Sarah Seager, MIT; Slide courtesy Matt W. Smith and the ASTERIA team

Arcsecond Space Telescope Enabling Research in Astrophysics (ASTERIA)

- Precision pointing to better than
 0.5 arcsec RMS
- ✓ Thermal control of the focal plane to < 0.01K
- Exoplanet transits using stellar photometry
- ✓ Smallsat of the year 2018

ASTERIA 55 Cancri e Transit Light Curve

ASTERIA - Pointing and Thermal Control

Slide courtesy Matt W. Smith and the ASTERIA team

27.015

27.01

27.005

26.995

26.99

26.985

26.98

940

945

27

Temperature (C)

- \checkmark Achieved pointing error < 0.5arcseconds RMS over 20 minutes
- \checkmark Blue scatter points show pointing without piezo stage correction
- \checkmark Red scatter points show pointing with piezo stage correction

- Achieved focal plane thermal control $< \pm 0.01$ K over 20 minutes
- **Optical Telescope Assembly is** \checkmark thermally isolated, stable

Black line is a moving window average

over 1 minute

Trim heaters and coarse/fine control \checkmark loop maintain temperature stability

20 minutes

955

950

Time (min)

baffle 2

FP1

FP2

FP3

Colin Smith

960

Government sponsorship acknowledged.

MarCO – the first Interplanetary Cubesats

Cubesat Developer's Workshop, 2019

INSPIRE – Pathfinder for MarCO [still on the shelf]

Ready for launch since 2014

Cubesat Developer's Workshop, 2019

© 2019 California Institute of Technology. U.S. Government sponsorship acknowledged.

Electrical Power System + Battery Board (U. Michigan)

19

EXPLORATION MISSION-1: LAUNCHING SCIENCE & TECHNOLOGY SECONDARY PAYLOADS

ORION STAGE ADAPTER SUPPORTS BOTH

PRIMARY MISSION AND SECONDARY PAYLOADS

PRIMARY MISSION

AND ORION

SPACE LAUNCH SYSTEM (SLS) LIFTS MORE THAN ANY

EXISTING LAUNCH VEHICLE

SECONDARY PAYLOADS

THE RING THAT WILL CONNECT THE ORION SPACECRAFT TO NASA'S SLS ALSO HAS ROOM FOR 13 HITCHHIKER PAYLOADS

ORION SPACECRAFT

TRAVELING THOUSANDS OF MILES BEYOND THE MOON, WHERE NO CREW VEHICLE (SELF-CONTAINED AND INDEPENDENT HAS GONE BEFORE²⁰¹⁹ California IPRIONIC THE TRAINARY MISSION) U.S. Government Scotters are on their way Predecisional informational forgetation and discussion only

13 CUBESAT EXPLORERS

GOING TO DEEP SPACE WHERE FEW CUBESATS HAVE EVER GONE BEFORE.

SHOEBOX SIZE PAYLOADS EXPAND OUR KNOWLEDGE FOR THE JOURNEY TO MARS

#RIDEONSLS0

Then a swarm of lunar cubesats are planned to launch with EM-1 (2020?)

ORION STAGE ADAPTER SUPPORTS BOTH

PRIMARY MISSION AND SECONDARY PAYLOADS

PRIMARY MISSION

TESTING SLS AND ORION

SPACE LAUNCH SYSTEM (SLS) IFTS MORE THAN ANY EXISTING LAUNCH

esat Developer's Workshop, 2019

SECONDARY PAYLOADS

THE RING THAT WILL CONNECT THE ORION SPACECRAFT TO NASA'S SLS ALSO HAS ROOM FOR 13 HITCHHIKER PAYLOADS

ORION SPACECRAFT

TRAVELING THOUSANDS OF MILES BEYOND THE MOON, WHERE NO CREW VEHICLE

AVIONICS

(SELF-CONTAINED AND INDEPENDENT HAS GONE BEFORE 2019 California Instructer DE TERMARY, MISSION) U.S. Governing ENDS GUISESATIS ON THEIR WAY Predecisional information for galahning and discussion only

CUBESAT EXPLORERS

GOING TO DEEP SPACE WHERE FEW CUBESATS HAVE EVER GONE BEFORE.

SHOEBOX SIZE PAYLOADS EXPAND OUR KNOWLEDGE

FOR THE JOURNEY TO MARS

#RIDEONSLS

PREFIRE - PolaR Energy in the Far InfraRed Experiment

PI: Tristan L'Ecuyer, UWisc Slide courtesy Brian Drouin, JPL

energy received in the tropics.

Nearly 60% of Arctic emission occurs at

wavelengths > 15 μ m (FIR) that have

never been systematically measured.

PREFIRE improves Arctic climate predictions by anchoring spectral FIR

emission and atmospheric GHE

California Institute of Technology

- ✓ Two 3-U CubeSats in asynchronous polar orbits
- Miniaturized IR spectrometer

MIR

41%

The Arctic is Earth's thermostat. It **Planned launch** regulates the climate by venting excess in 2021

GRATING

THERMOPILE

2U Thermal IR Spectrometer

- a Optical bench assembly - Calibration motor assembly
 - c Calibration target

Thermopile array	Spectral resolution	Spatial coverage	Mass	Data rate	Power peak/avg		
64 × 16 pixels	0.84 μm from 0–45 μm	16 cross-track pixels with 1.2° footprints	0.97 kg	35 kbps	6.74 / 1.74 W		
VISCONSIN							

litah State University Research Foundat

SNOOPI – SIGNALS OF OPPORTUNITY INVESTIGATION

Slide courtesy co-I Rashmi Shah, JPL

© 2019 California Institute of Technology. U.S. Government sponsorship acknowledged. ✓ PI: Jim Garrison, Purdue U.

- UHF Signals of Opportunity track Snow Water Equivalent (and Soil Moisture)
- ✓ SoOp altimeter
- ✓ Planned launch in 2021

Cubesat Developer's Workshop, 2019

CubeSat IR Atmospheric Sounder (CIRAS) [canceled but back in the game]

SPARCS 6U cubesat mission

Study UV environment of exoplanets around M dwarf stars

Slide courtesy of David Ardila, JPL

Planned launch in late 2021

- 9 cm aperture
- 2-mirror telescope
- Dichroic + Two detectors
- Simultaneous observations FUV/NUV
- 1 day to 3 mth 'staring' mode

SunRISE is in extended Phase A

- Sun Radio Imaging Space Experiment (SunRISE)
 - Use radio emissions to track solar
 CME particle acceleration and transport
 - Proposed science swarm to form an RF Interferometer
 - 6 spacecraft synthetic aperture Combined GPS + HF receiver
 - 6U Spacecraft

Cubesat Developer's Workshop, 2019

Pre-Decisional Information -- For Planning and Discussion Purposes Only

Pathfinder (2017/18)

Looking at the Horizon

Cube-train Constellations for Earth Science

MarsDrop Micro-lander

CubeSats at Saturn?

- ✓ Power 11 days to fully charge a 200 Whr capacity battery with 1.2-2W solar power @ Saturn
- ✓ Control need <0.003° pointing; >35°/sec slew rates
- X-Band Communications (relay to primary) with 28 dBi reflectarray
- Propulsion (chemical) up to 250 m/s ΔV
- ✓ Thermal compact RHUs

Lunar IceCube: 120 W @ Earth

Slide courtesy Andrew Bocher, Cal Poly SLO

Cubesat Developer's Workshop, 2019

MarCo 28 dBi reflectarray

© 2019 California Institute of Technology. U.S. Government sponsorship acknowledged.

Saturn Ring Diver Concept

1W; 40g RHU

And in 2020 the Mars Helicopter...

Cubesat Developer's Workshop, 2019

The CubeSat Era in Space

READ MORE

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

www.jpl.nasa.gov/cubesats

Cubesat Developer's Workshop, 2019

© 2019 California Institute of Technology. U.S. Government sponsorship acknowledged. Q

search