RainCube - First Ka-Band Precipitation Radar in CubeSat: From Concept To Mission

Presenter - Shivani Joshi (Mission Operations Manager)
Principle Investigator - Eva Peral
Project Scientist - Simone Tanelli
Project Manager - Shannon Statham
Jet Propulsion Laboratory, California Institute of Technology, CA, USA

Mission Operations Lead – Chris Shaffer
Tyvak Nano-Satellite Systems, Inc., Irvine, CA, USA
RainCube (Radar in a CubeSat) is the first active radar instrument in a CubeSat platform to operate in Low Earth Orbit.

RainCube is funded through the NASA Science Mission Directorate’s (SMD) Research Opportunities in Space and Earth Science (ROSES) 2015 In-Space Validation of Earth Science Technologies (InVEST) solicitation with the goal of raising the instrument TRL from entry 4-5 to exit 7.
RainCube, a Ka-band precipitation radar in a 6U CubeSat

Organization Chart

- **RainCube Program Manager**
 - Eastwood Im / Gary Lau

- **Principal Investigator**
 - Eva Peral

- **Principal Scientist**
 - Simone Tanelli

- **Project Manager**
 - Shannon Statham

JPL
- **Spacecraft Manager**
 - Macon Vining

- **Radar Instrument Manager**
 - Eva Peral

- **Mission Operations Manager**
 - Shivani Joshi

- **Mission Assurance Manager**
 - Carlo Abesamis, Nazilla Rouse

- **Lead Systems Engineer**
 - Travis Imken

JPL
- **Mission Assurance Manager**
 - Carlo Abesamis, Nazilla Rouse

Tyvak, Inc.
- **Lead Systems Engineer**
 - Travis Imken

Radar Instrument Manager
- **Instrument Engineer**: D Price
- **Antenna RF**: N Chahat
- **Antenna Mechanical**: J Sauder, T Bailey
- **Power Electronics**: G Cardell, B Wang, D Chi
- **Electronics RF**: D Price, C Parashare
- **Digital Assembly**: M Cruz, S Joshi, B Ortloff, D Wang
- **Electronics Packaging**: G Gaughen, J Cardone

JPL
- **Science Data Processing**: E Peral, S Tanelli, G F Sacco, O Sy
- **JPL Anomaly Response Team**: E Peral, S Tanelli, S Statham, T Imken, N Rouse, J Sauder (Antenna)
- **Additional Anomaly Resolution support**: B Ortloff, D Price, M Cruz

Tyvak, Inc.
- **Manager**: A Williams, T Mosher
- **Operations Manager**: M Villa
- **SC Operators**: K Kawashima, J Price, S Sundin
- **SC Commissioning support**: S Fitzsimmons

Tyvak, Inc.
- **Manager**: A Williams, T Mosher
- **Operations Manager**: M Villa
- **SC Operators**: K Kawashima, J Price, S Sundin
- **SC Commissioning support**: S Fitzsimmons
Timeline from TRL0 to TRL 7

- May '13: Brainstorming
- 2013: Initial concept
- July '13: Lab demo with prototype HW
- July '14: Lab demo with prototype HW
- Sept '16: Instrument CDR
- Mar '17: Instrument delivery to Tyvak
- Feb '18: Delivery to Nanoracks
- May '18: Launch to ISS
- July 13: ISS deployment
- Aug 5: First echo
- Aug 27: First rain!
- 16 months from funding to instrument delivery

2 years from TRL 0 to TRL 4

- Sept '18: 1st Extended Mission
- Feb '19: 2nd Extended Mission
- July 28: Antenna deployment
- Aug 5: First echo
- July 13: ISS deployment
- Aug 27: First rain!
- Feb 19: 2nd Extended Mission

Precipitation Surface Signal Isolated cell
Image credit: NASA/JPL/Caltech - Google
First successful operation in Nadir Pointing & first detection of rain over the Sierra Madre Oriental, near Monterrey, Mexico. Fast growing orographic precipitation developed shortly before RainCube’s pass which overflew its north-eastern edge.
RainCube and TEMPEST-D coincidental measurement of Typhoon TRAMI

- September 28, 2018, TEMPEST-D and RainCube overflew Typhoon Trami < 5 minutes apart
- RainCube nadir Ka-band reflectivity shown overlaid on TEMPEST-D 165 GHz brightness temperature illustrating complementary nature of these sensors in constellation for observing precipitation
- Trami observed shortly after it had weakened from Cat 5 to Cat 2

Slide Credit – Shannon Brown (TEMPEST-D), Simone Tanelli (RainCube)
In order to improve efficiency of mission operations, we increased automation starting with automating the planning of events in a prioritized way.

Constraints
- Maximum of 6 20 minute Radar Acquisitions per day
 - Imposed by spacecraft power system
- No operations on consecutive orbits
 - Imposed by spacecraft power system
- No operations in umbra
 - Preferred because of higher occurrence of reboots in umbra

Target Priorities
- Forecasted presence of precipitation
- CONUS – for NEXRAD
- GPM – for DPR
- Storms of interest

Calculate local probability of precipitation along the predicted orbit of RainCube

Parse images & define precipitation mask every 6 hrs

Prioritize close approaches with GPM and passes over GPM GV sites (CONUS, Japan, Australia)
RainCube Collocated Observations with GPM (Post Optimisation)

RainCube GPM tracks vs time

3D view of Observations close to intersection

Pointing assessment

Z(RainCube)

Z(GPM) collocated

NRCS σ^0

Separation between RainCube and closest GPM profile
RainCube Data is Available on TCIS Portal

The Tropical Cyclone Information System will host RainCube data.

Huge thank you to PI: Svetla Hristova-Veleva, Site Administrator Quoc Vu, and Data Manager Brian Knosp.

Tested posting data and accessing through url. L2 Data will be made public when QC is satisfactory. No plan to open L0 and L1 data to the public.
1. Extended Formulation Phase

• Resulted in simplification of the architecture and early execution of de-scopes which focused the team on the core challenges needed for a successful technology demonstration.

• The many table top reviews with internal team of subsystem experts ensured that project and radar-system requirements captured mission’s goals without placing implementation burden on TBD bus vendor.

2. Tailored versions of NASA and Institutional Flight Practices

• RainCube’s project philosophy was to meet with all of the groups that are normally involved in flight projects and work with them to determine what benefits could be provided within the cost and schedule limits.

• For these items in which RainCube could not directly comply, the DTAB worked with the team to identify alternatives or mitigations. The DTAB experts also provided guidance on the development of risk likelihoods, consequences, and mitigations that were specific to the mission.
Lessons Learned

3. Pros and Cons of 6U form factor

Pros

• easy access to space through a standardized dispenser
• Most CubeSat bus vendors support this form factor
• More support and lessons learned available in CubeSat community

Cons

• Routing of cables can be challenging
• Thermal control can be challenging
• Limits size of deployable antenna for radar applications

4. Revise mass growth contingency

• The project was too conservative on mass through formulation and implementation due to the application of traditional ‘large spacecraft’ contingencies for mass growth.

• This overestimation is problematic on CubeSats since delivering significantly under mass could impact Earth orbit lifetime or require ballast to be installed into the spacecraft.

• The traditional 5-30% contingency applied to mass growth on large spacecraft should be reduced in CubeSat implementations, since the volume limits inhibit mass growth.
5. Value of pre-Operations ORT

- RainCube’s pre-operations readiness reviews with operations team at Tyvak gave the team chance to rehearse operations procedures for nominal and off-nominal situations.

6. Value of Anomaly Response Team

- Members of RainCube’s ART provided valuable 24x7 anomaly response support to the operations team. They were instrumental in ensuring successful commissioning phase and prime mission success.

7. Prioritized mission objectives

- RainCube’s PI and project scientist had clear objectives for operations team that went well beyond primary mission objectives.
What’s Next?

• Constellation of RainCube’s “as is”
 - Analyze the current dataset to demonstrate science questions.

• Constellation with a larger/scanning antenna
 - To address a larger set of science questions
 - Development of technologies and mission concepts is ongoing

• Constellation with other Radars and Radiometers:
 - A study team in the Earth Science Decadal Survey 2017 will consider RainCube-like constellations for measurements of convection and precipitation
 - Higher frequency versions of RainCube for cloud and water vapor observations

• Planetary applications
 - An evolution of this instrument could support altimetry and cloud and precipitation on planetary targets

RainCube, a Ka-band precipitation radar in a 6U CubeSat
Concluding remarks

- RainCube is the first CubeSats to fly an active sensing radar payload, and the mission’s success could pave the way for future constellations or convoy of many precipitation profiling radars.
- Since deployment in July 2018 with an originally planned three month demonstration mission, RainCube has been extended twice and has operated for nine months, three times its original mission length.
- Different methods of operating the instrument and the spacecraft have been demonstrated based on lessons learned on-orbit.
- JPL/Tyvak partnership and agility has enabled RainCube to exceed original mission expectations.
- The project’s lessons learned will be valuable as JPL and other institutions propose and develop enabling science and technology demonstrations on the small satellite platform.
You can now follow RainCube on NASA’s Eyes
https://go.nasa.gov/2PGdBus