MarCO: Mars Cube One

Dr. Andrew Klesh Jet Propulsion Laboratory, California Institute of Technology

MarCO Demonstrated Miniaturized Technology Enabling Small Spacecraft Exploration

How MarCO Sizes Up

Mars Reconnaissance Orbiter

45 ft x 21 ft (4,810 lbs)

Person

14.5 in x 72 in (154 lbs)

MarCO

2

34 in x 22 in (30 lbs)

MarCO Increases the Efficiency of Launch, Enabling More Exploration

Cost & Schedule

Cost

Missions to Mars

MarCO Brought 7 Million People to Mars... Live

InSight

Spirit

Curiosity

2 Small Spacecraft
97% of Data Relayed
171 Newspaper Front Pages
1008 News Articles Worldwide
Over 5 Billion Media Impressions

MarCO: Finding New Vantage Points

Disposable Probes for Dangerous and Exciting Exploration

Dare Mighty Things

Copyright 2019, Jet Propulsion Laboratory, California Institute of Technology Government Sponsorship Acknowledged

MarCO: Protecting Astronaut Health

BioSentinel

MarCO: Advancing Planetary Defense

Juventas

Hera

Asteroid Prospection Explorer (APEX)

"The idea of building SmallSats for deep space... was recently validated... when a pair of accompanying SmallSats succeeded in relaying [InSight's] radio signals back to Earth – as well as returning imagery of the Red Planet."

- ESA Hera Lead Engineer

Mars missions

Source: NASA *En route or on arrival

Earth at Arrival

> TCM-6 (22 hours before landing) TCM-5 (8 days before landing) TCM-4 (15 days before landing)

TCM-3 (45 days before landing)

Earth at Launch

TCM-1 (17 days after launch)

Mars at Launch

TCM-2 (121 days before landing)

MarCO Overview:

Delta-V: >40 m/s

Volume: 2 x 6U (12x24x36cm) Mass: 14.0 kg **Power Generation:** Earth: 35 W / Mars: 17W Data Rates: 62-8,000 bps

Software:

FSW: protos (JPL) GSW: AMPCS (NASA/JPL)

<u>1&T:</u>

In-house S/C I&T, testing, Tyvak NLAS/Launch Integration Operations: Primary: DSN 34m EDL: Madrid 70m

Mission Objective
Provide an 8kbps real-time relay for InSight's Entry, Descent and Landing at Mars

Technology	Tech Objectives / Results
Threshold	
Miniaturized deep space radio (IRIS)	Successful uplink (62.5 – 1k) and downlink (62.5 – 16k) + ranging + Delta-DOR
Flat Panel Antenna	Measured gain matches predicts (> 28 dBi)
TCMs on a CubeSat	Completed execution of TCM 1-4
Baseline	
CubeSat in deep space	Viable operations beyond Earth orbit
Bent-Pipe Relay	Inflight demo with Stanford UHF bent-pipe + Insight EDL

EDL Day

- Both MarCO-A and MarCO-B performed within expectations
- UHF Link, both vehicles
 - Covered full duration of Insight UHF Transmit
 - Lost lock for < ~ 5 seconds only at the expected events of plasma blackout, parachute deploy, Lander separation, and Landing
- X-Band Link, both vehicles
 - Solid on both throughout
 - No frames dropped
- Swap of Insight uplink to MarCO-B during EDL enabled efficient use of post-EDL bandwidth resulting in receipt of this image within ~ 1 hour of Landing
- MarCO-A atmospheric occultation data recorded analysis in progress

MarCO-B Wide FOV Camera Image, 26 November 2018; DOY330T20:10:00, ~ 6000km range

Insight

Landing

Site

MarCO Achievements

- 1. Demonstrated necessary technology and techniques for deep space small spacecraft
- Provided unique vantages and support for InSight lander (MarCO returned 97% of InSight EDL data; MRO returned 76%)
- 3. Challenged perception of the achievable

High risk addressed through isolation from primary, redundancy, and MRO backup

Low-Cost Heliophysics: Constellation of 50 standalone 10 kg spacecraft to monitor the solar wind 3D structure at Sun-Earth

Supplemental Science: Sacrificial probes used to scout plume passage or descend into high magnetic fields.

Enabling Novel Science: Use multiple nano s/c to allow for distributed flybys, capturing multiple vantage points simultaneously.