

Enabling University-Operated Tracking and Communications for Deep Space Smallsat Missions

CubeSat Developers' Workshop

May 2, 2018

Ben Malphrus, Jeff Kruth (MSU)
Tim Pham, Jay Wyatt, (JPL)

Morehead State University 21 Meter Space Tracking Antenna

- Specifications by MSU faculty with NASA assistance
- Dual Purpose Instrument
 - Ground Station for Smallsats
 - Radio Telescope for Astronomy Research
- Funded \$6 M -a variety of sources- Morehead State, Federal and State Funds, KSTC, NASA
- Built and Installed by VertexRSI (General Dynamics)
- Operational in 2006

· Aircraft Warning Light Lightning Rod — RF Feed Reflector Panels -Focal Point Feed Support S Reflector Support Structure -Reflector Hub Structure -Elevation Axis-Elevation Axis Platform -Elevation Sector Gear Counter Weights -Upper Buffer -Elevation Stow -Rotating Platform/Ladder - Torque Box AzimuthBearing Azimuth Drive **Emergency Stop Switch** Pedestal Platform (fixed) Lower Equiptment Room (LER) -

21 M Overview

Parameter	Measured Values
Axis Slew Velocity	
Azimuth	> 3.0 °/sec minimum
Elevation	> 1.6 °/sec minimum
Polarization	> 0.7 °/sec minimum
Axis Acceleration	
Azimuth	1.0 °/sec²
Elevation	0.6 °/sec²
Travel Range	
Azimuth	± 269.8°
Elevation	1.0° to 90.3°
Polarization Range	± 90°
Pointing Accuracy	0.005° RMS
Tracking Accuracy	0.0004° RMS
Aperture Efficiency, η (L/Ku)	0.653/0.563
Surface Tolerance @ 35 mph wind	< 0.020" RMS

Interplanetary SmallSat Ground Ops: Morehead State 21 M Ground Station- Current Operational State

- •Fully Operational, Full-Motion, 21 M Antenna
- •Operational Experience: LRO, ISEE-3, Planet Labs, KySpace, JPL ASTERIA
- •High Gain, Pointing and Tracking Accuracy
- •Station is ideal for Inner Solar System Experiments
- •Full Remote Control of All Systems
- UHF and S-Band Uplink and Downlink
- NASA NEN Compatible
- Software-Defined TT&C Processor (SoftFEP) and High Data Rate Digitizer for Experimental Missions
- Extensive use of Student Operators (STEM Engagement)

Morehead State University 21 M Ground Station

ISEE-3 Carrier During Lunar Fly-by Sept 2014

Student Operators in the MSU 21 M LFR

Student Operators in the MSU Mission Ops Center

MSU 21 Meter Current RF Capabilities

Radio Band	Frequency	Gain	Uses of Band		
	Range				
UHF	400-480 MHz	30 dBi	Satellite Telecom		
S-Band	2.2-2.5 GHz	52.8 dBi	Both Satellite Telecom and		
			Radio Astronomy		
X-Band	7.0-7.8 GHz	62.0 dBi	Primarily Satellite Telecom		
Ku-Band	11.2-12.7 GHz	65.50 dBi	Primarily Satellite Telecom		

AES Program: Upgrade the 21 m for Interplanetary Smallsat Support to Reduce DSN Loading

Project Description and Objectives

Demonstrate a cost-effective process for expanding DSN capabilities by utilizing non-NASA assets to provide communication and navigation services to small spacecraft missions to the Moon and inner solar system, thereby enabling interplanetary research with small spacecraft platforms.

Technical Approach

- Develop and implement a strategy to transfer Deep Space Network (DSN) processes and protocols to the MSU 21 m antenna system to enable integration into the DSN as an auxiliary station to support small spacecraft missions.
- Implement deep space communications, tracking and navigation techniques as well as adoption of CCSDS standards.
- Implement systems upgrades, conduct tests/demonstrations, and transition to an operational capability.

Benefits

- Serves as a test-case for other non-NASA ground stations to provide auxiliary deep space navigation and tracking support for small spacecraft missions.
- Develops an operational capability to support EM-1 CubeSat missions in the 2018- 2019 timeframe
- Transparent to Missions Being Supported

Targets

Full DSN Compatibility
Scheduled by DSN
Support CCSDS-SLE
DSN Tracking and Ranging
Support Lunar, NEA, Lagrange Point
Missions at 128-256 kbps

Enabling Interplanetary Smallsat Ground Support- Toward DSN Compatibility

Primary Tasks

- Design, Develop and Implement Single-channel, Customized "Lite" Versions of DSN Equipment:
 - DTT- Downlink, Tracking and Telemetry
 - DCD- Data Capture and Delivery
 - UPL (USG- Uplink Signal Generator and UPA-Uplink Processing Assembly)
- Develop a 21 m version of NMC
- Implement 5 KW Power Amplifier
- Implement Hydrogen MASER
- Design and Fabricate Cryogenic X-Band Feed
- Modify IF Stages
- IT and Physical Security Upgraded
- Implement DSN Ranging Techniques
- Calibrate, Test and Validate System and all Subsystems
- Perform a Series of Downlink, Uplink and Ranging Demonstrations
- Commission as an Affiliated DSN station
- Add DSS-17 to DSN Scheduling
- Support Operational Readiness Review in Advance of EM-1

Enabling Interplanetary Smallsat Ground Support- Toward DSN Compatibility

Incremental Delivery and Testing

Delivery Increment	Test Focus					
DSN-provided Uplink, Downlink	a. Generation of command data					
and Data capture & delivery	b. Generation and correlation of ranging signal, for both					
	sequential and pseudo-noise ranging					
	c. Extraction of telemetry data					
	Data transfer between the uplink and downlink equipment and					
	the Data Capture & Delivery					
Connection to NASA Mission	IP connection (after IT Security scan)					
Backbone Network	b. Data delivery between the MSU DCD and JPL DCD (verifying all					
	routing permissions in the firewall setting, both for MSU & JPL)					
	c. Simulated data flow from DTT (at MSU) to TTD (at JPL)					
Installation of downlink RF	a. Extraction of telemetry and delivery to JPL					
equipment at the antenna						
Installation of uplink RF equipment	a. Generation of command data with Transmitter in the loop, with					
and Transmitter at the antenna	connection from SLE user to MSU Uplink equipment					
	Correlation of ranging signal, including the Transmitter and LNA components					
	Radiometric (Doppler/Ranging) data delivery to JPL					

New System Architecture Required

DSS-17 System Architecture

DSS-17 RF System and X-Band Feed

New X-Band Feed Required with Cryogenic LNA and High Power TX Capability

Service Management Data Flow

IT Security and NMB Connection

IT Security and Network Connection Required

- LAN Independent of University Network
- Architecture Designed with JPL and CSO
- Behind NASA Firewall
- Designed by NASA JPL and CSO
- Direct Connection to the NASA NMB

Project Status and Remaining Tasks

Primary Tasks Complete/In Process

- DSN Designation Assigned- DSS-17
- System Architecture Design Complete
- DSN Equipment Installed and In Testing

Hydrogen MASER in Operation (on semi-permanent Loan

from MIT)

•	X-Band Feed	Designed	and Fabric	ated
---	-------------	----------	------------	------

- IF Systems Complete
- Antenna Control Systems Tested
- IT Security Scans Being Conducted
- Initial Staff and Student Training Conducted

Major Tasks Remaining

- Implement and Test HPA
- Transfer Tracking and Ranging Processes
- Complete Staff and Student Training
- Implement Monitor Control
- Conduct Series of Validation Demonstrations
- Commissioning
- EM-1 ORR

Purple Glow from the Hyperfine Transition of Atomic Hydrogen

		Measured	1
Duration	Detector	Allan	N
(s)	reading	Deviation	Re
1	4.50E-013	3.18198E-13	3.3
10	6.00E-014	4.24264E-14	1.0
100	2 00F-014	1 41421F-14	2 :

equired Hydrogen MASER
.30E-13

DSN Equipment at DSS-17

21 m Station Control System

Morehead State Student Operators Gaining Invaluable Experience during JPL ASTERIA mission

Expected 21m Performance

Performance Measure	Pre-Upgrade	Post-Upgrade	
X-Band Frequency Range	7.0 – 7.8 GHz	7.0 – 8.5 GHz	
LNA Temperature	70 K	< 20 K	
System Noise Temperature	215 K	<100 K	
Antenna Gain	62 dBi (@7.7 GHz)	62.7 dBi (@8.4 GHz)	
System Noise Spectral Density	-175 dBm/Hz	<-178 dBm/Hz	
G/T at 5° Elevation	37.5 dB/K	40.4 dB/K	
Time Standard	GPS (40 ns)	Hydrogen maser (1 ns/day)	
EIRP	N/A	93.7 dBW	
HPBW	0.124 deg	0.115 deg	
SLE Compliance	N/A	Yes	
CCSDS Compliance	N/A	Yes	
Forward Error Coding	Reed Solomon/Convolutional	Reed Solomon/Convolutional, Turbo, Low Density Parity	
Radiometric	Angle, Doppler	Check Angle, Doppler, Ranging	
Naulometric	Aligie, Dopplei	Aligie, Duppiel, Naligilig	

Planned Testing and Validation Demonstrations

MarCO

- Downlink Using X-Band Feed and DSN Equipment
- Downlink Using X-Band Feed and MarCO Receiver System
- OMSPA Using X-Band Feed and Custom SDR-based Multiple Receiver System
- UHF Uplink Simulating Insight for MarCO Testing

OSIRIS Rex and MAVEN

•	Upl	link	Testir	าg
---	-----	------	--------	----

•	Downlink Testing	
	– • • • • • • • • • • • • • • • • • • •)

 Ranging Tests 	5
-----------------------------------	---

Mission	Uplink Margin, dB	Downlink Margin, dB
Osiris Rex	20.9	5.8
Maven	17.3	5.5

LRO

- Tracking Precision Testing
- SNR and CNR Measurements

Lunar IceCube

DTN Demonstration

DSS-17 Next Steps

Remaining Critical Milestones

Downlink Demo	NASA NMB Connection	Downlink Demo	Uplink Demo	Ranging Demo	ORR	Operational	EM-1 Mission Ops	Mission Duration	Future Interplanetary Smallsats
5/5/2018	06/30/2018	5/5/2018	3Q 2018	4Q 2018	Q3 2019	Q4 2019	Q4 2019	EM-1 CubeSats Duration	Beyond EM-1

On Target for Operational Readiness for EM-1

Prepared to Provide Support for NASA EM-1 CubeSats

Lunar IceCube NEA Scout LunaH- Map

Lunar Flashlight Biosentinel

Future of DSS-17

Possible Extensions and Adaptations

- Multiple Spacecraft per Aperture (MSPA) and Opportunistic MSPA (OMSPA)
- Delay/Disruption Tolerant Networking (DTN)
- UHF Uplink/X-band Downlink for MarCO Experiment

Traditional MSPA Opportunistic MSPA "N" smallsats 2 spacecraft opportunistically that will be in transmit open same beam loop while in formally beam of a "host' schedule to spacecraft. "Host" share spacecraft antenna. has a formally Each spacecraft scheduled downlink to a downlinks to a receiver. separate receiver. Currently, 2 receivers per Smallsat open-loop antenna, allowing 2-MSPA. transmissions are DSN moving to 4-MSPA captured on a wideband capability on selected recorder. antennas.

Support for Space Networking

DSS-17 Affiliated Station

Questions?

