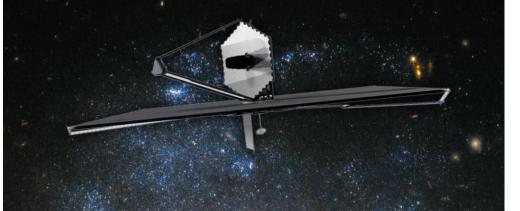


Designer "Star": Spacecraft Development of the Laser Guide Star for a Large Segmented Aperture Space Telescope

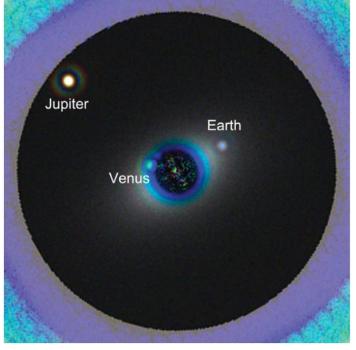
Ewan Douglas, Weston Marlow, Jim Clark, Ashley Carlton, Kerri Cahoy Massachusetts Institute of Technology

> Jared Males, Jennifer Lumbres, Olivier Guyon University of Arizona

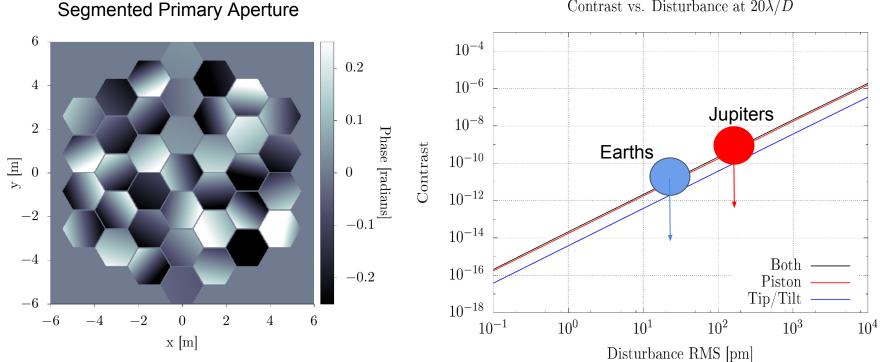

NASA GSFC Collaborator: Lee Feinberg

2018 Cubesat Developers Workshop

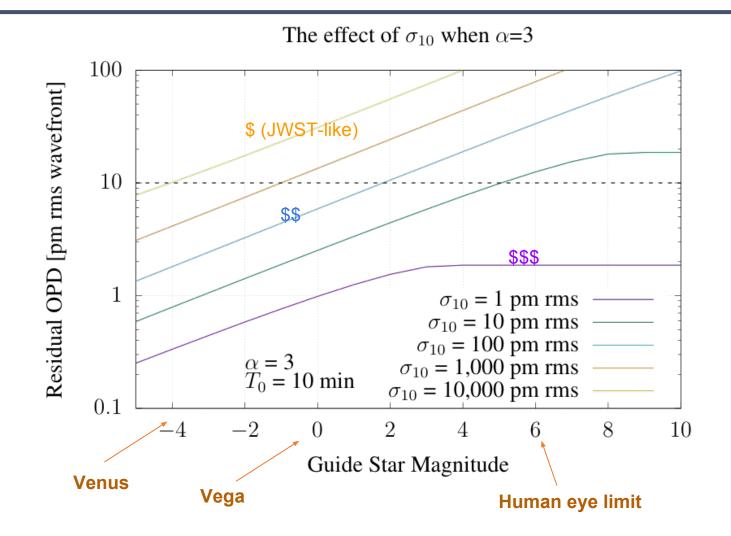
updated: 1 May 2018


Motivation: Direct Image Earth-like Exoplanets

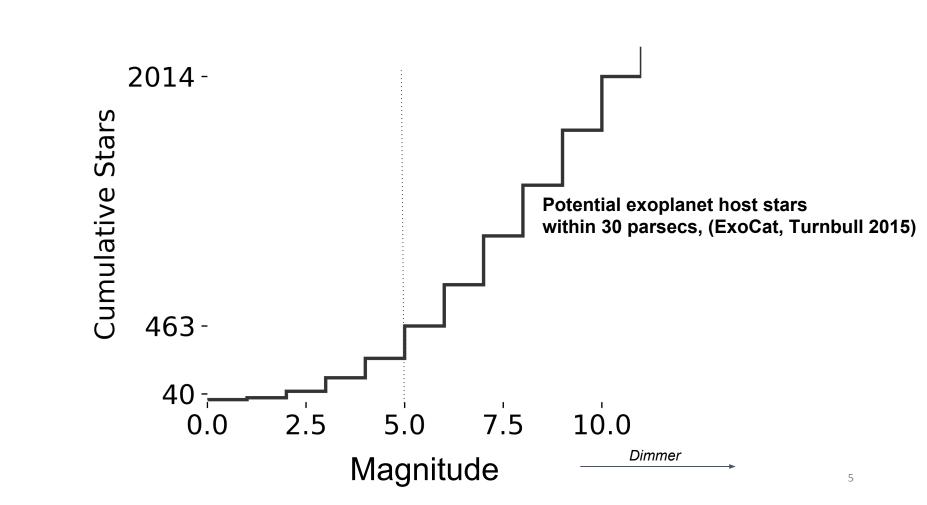
- **10⁻¹⁰** planet-star flux ratio \rightarrow need to block star with high contrast \rightarrow star shade or coronagraphy in space
- < 0.1 arcsecond planet-star separations ٠ \rightarrow 4 meter to 16 m telescope


LUVOIR 9.2 m to 15 m segmented aperture concepts http://www.stsci.edu/scientific-community/community-missions/advanced-concepts

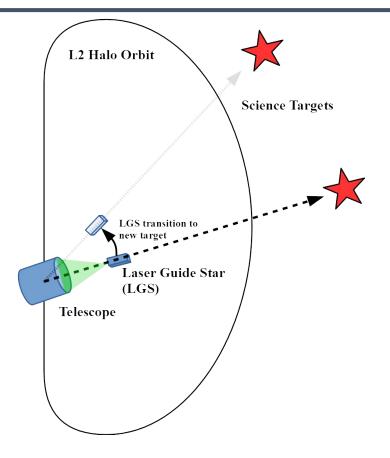
Roberge et al., "Finding the Needles in the Haystacks: High-fidelity Models of the Modern and Archean Solar System for Simulating Exoplanet Observations," Publications of the Astronomical Society of the Pacific, vol. 129, 2017, p. 124401.



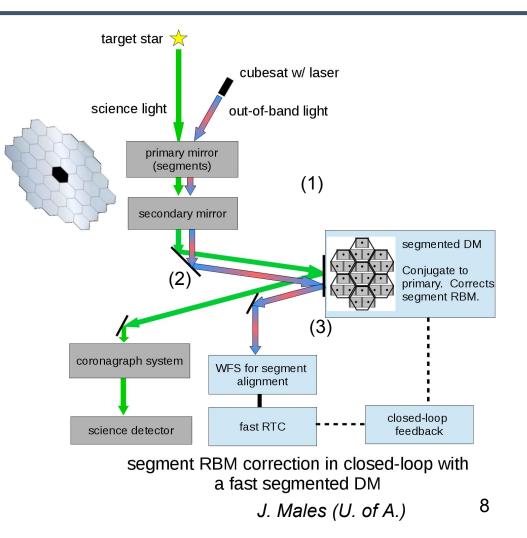
Contrast vs. Disturbance at $20\lambda/D$


J. Males (U. of Arizona).

Bright guide stars improve closed loop wavefront sensing & control

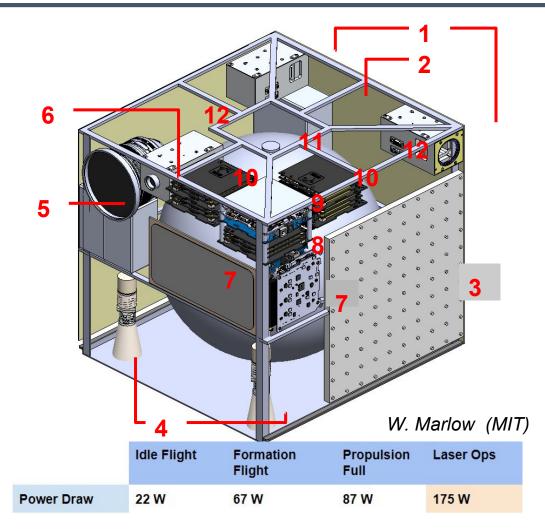

Solution? Build your own bright star.

- Large segmented space telescope stays on periodic halo orbit
- Small satellite companion(s) fly in front of target star.
- Range: 10,000 km to 100,000 km
 - Sets wavefront curvature (near-field focus) and fuel usage
- Station keeping
 - Sets accuracy, keeps guide-star behind coronagraph
- Pointing
 - Sets power budget and beam divergence


Goal: Relax stability requirements

Segment rigid-body motion compensation

1) Primary is re-imaged on fast segmented Deformable Mirror


2) LGS light is split to a WFS, science light goes to coronagraph.

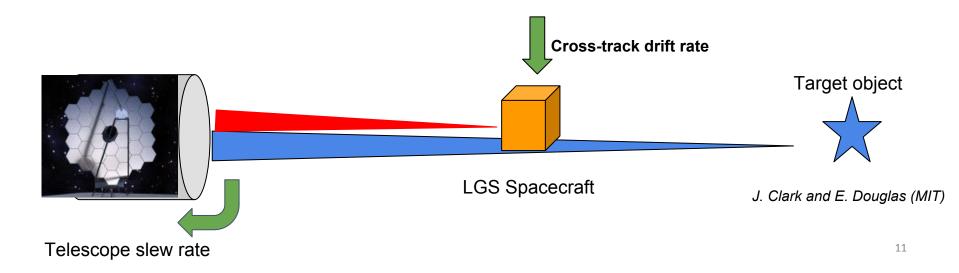
3) WFS feedback in closed-loop to segmented DM, which corrects piston & tip/tilt

27U Preliminary Spacecraft Design

Shown:

- 1. Star trackers
- 2. ADCS
- 3. LED beacon
- 4. Thrusters (2 of 4 shown)
- 5. Main laser system
- 6. Beacon laser
- 7. RF ranging and comm
- 8. Electrical power system
- 9. Avionics system
- 10. Batteries
- 11. Fuel tank
- 12. Radiator panels

Not shown:

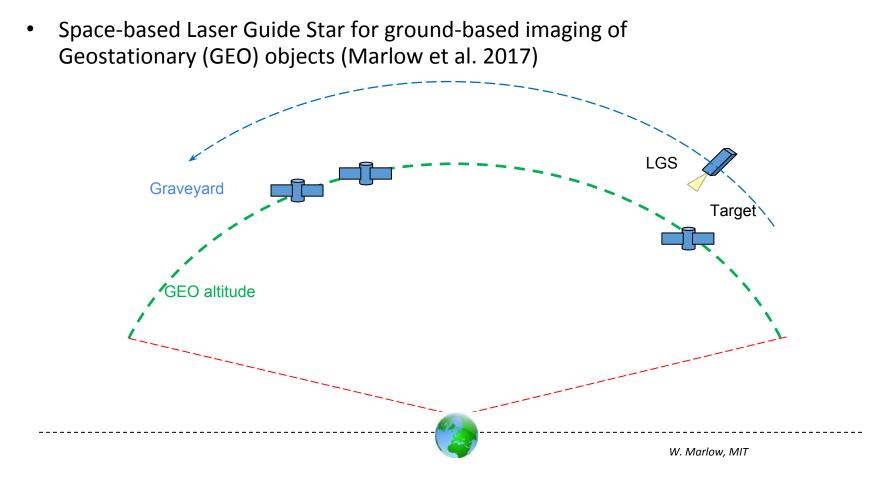

- Solar arrays
- Full thruster plumbing
- Full thermal management 9

But how to test (not at L2)?

Earth Orbit Demo Performance Factors

- Two important angle rates
 - The **slew rate** of telescope tracking the target
 - The guide star **drift rate** across the telescope-target vector
 - This is related to the thrust that the LGS would have to use to fight the dynamics of the system to stay on the target vector.
 - We consider these factors in order to **design a propulsion system** for the LGS
 - And assess how long the LGS can formation fly with a target

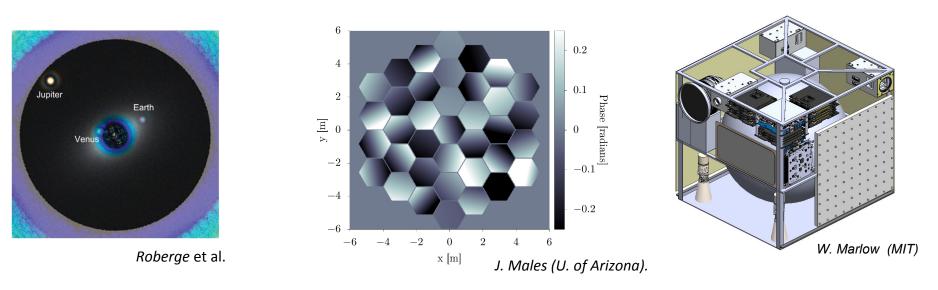
Earth-Orbit Demonstration Feasibility


l'liiT

Telescope Location	LGS Location	Target	Telescope-LGS Range	Telescope Slew Rate	LGS Drift Rate	LGS Thrust Requirement
L2	L2	Star	10,000 km to 100,000 km	"0"	~1 deg/day (0.2 urad/sec)	< 0.1 mN cross-track
LEO	GEO + 300 km (graveyard)	GEO ComSat	35,000 km to 45,000 km	~0.1 mrad/sec (0.3'/sec)	~0.8 urad/sec	0.01-0.1 N radial in
Ground	GEO + 300 km (GEO graveyard)	GEO ComSat	32,000 km to 39,000 km	"0"	~0.3 urad/sec	0.01-0.1 N radial in

Imaging GEO: Super/Sub synch maneuvers

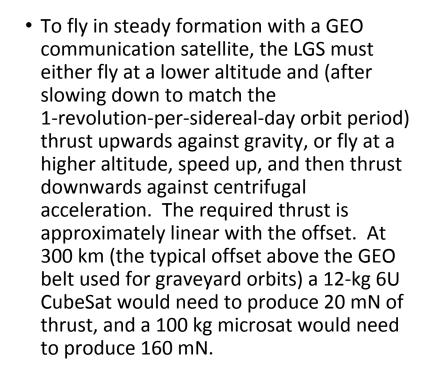
Propulsion option	Max Thrust (mN)	Power Required (W)	Delta-V Cap. (m/s)	Max offset from GEO (km)	Max formation flight duration (hours)	TRL (Est.)
6U, Accion TILE 5000 (x2)	3	60	860	47	950	7
6U, Busek BIT-3	1.24	80	2900	16	9,000	5+
27U, Aerojet MR-111C (x4)	21,200	54.56	1060	300	184	9
27U Microsat, Enpulsion IFM micro (x4)	16	1600	6840	30	12,000	5

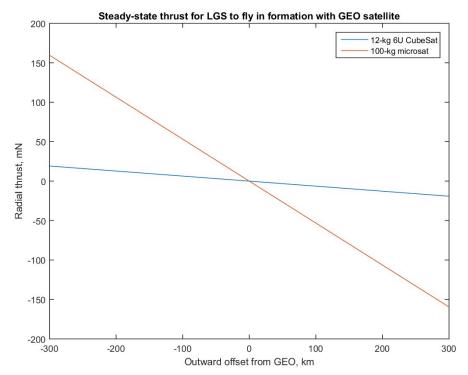

J. Clark (MIT)

• Max formation flight duration does not include costs of stationkeeping or matching speeds with the target satellite.

- We have developed a baseline laser guide star spacecraft concept which increases discovery space while relaxing requirements on segmented aperture telescope stability by several orders of magnitude
- A GEO to ground demo is feasible first step, demonstrating comparable vehicle rates

Questions?





Backup

Demonstrate with GEO target and quasi-GEO Guide Star

J. Clark (MIT)

Illii Formation Flight Scenarios

A	
	6

Scope	LGS Location	Target	Scope-LGS	Scope Slew Rate	LGS Drift Rate	LGS Thrust	Notes
Location			Range			Req.	
L2	L2	Star	10,000-100,000 km	"0"	~1 deg/day (0.2 urad/sec)	< 0.1 mN cross-track	Reference scenario
LEO	GEO	Star	35,000-45,000 km	"0"	~0.1 mrad/sec (0.3'/sec)	10-100 N radial in	"Hubble/ISS + LGS"very different from L2 ops.
LEO	GEO + 300 km	GEO-Com	35,000-45,000 km	~0.1 mrad/sec (0.3'/sec)	~0.8 urad/sec	0.01-0.1 N radial in	Useful for SSA
LEO	GEO	Imaginary ref. in GEO	35,000-45,000 km	~0.1 mrad/sec (0.3'/sec)	~1 deg/day (0.2 urad/sec)	< 0.1 mN	The LGS performance metrics match, but do we get anything for it?
Ground	GEO	Star	32,000-39,000 km	0.25 deg/min (70 urad/sec)	~0.1 mrad/sec (0.3'/sec)	1-10 N radial out	Sort of like Greenaway and Clark 1994, but it won't work (they proposed HEO)
Ground	GEO + 300 km	GEO-Com	32,000-39,000 km	"0"	~0.3 urad/sec	0.01-0.1 N radial in	Marlow et al. 2017, useful for SSA
Ground	GEO	Imaginary ref. in GEO	35,000-45,000 km	"0"	~1 deg/day (0.2 urad/sec)	< 0.1 mN	The LGS performance metrics match, but do we get anything for it?

J. Clark (MIT)

Wavefront error power spectrum defined as

$$\beta_{OPD}^2 = \frac{\sigma_{10}^2}{\int_{1/600}^{\infty} \left(f_o^2 + f^2\right)^{-\alpha/2} df}.$$

c.f. Males and Guyon. 2018.:

https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes-Instruments-and-Systems/volume-4/issue-1/019001/Ground-based-adaptive-optics-coronagraphic-performanceunder-closed-loop-predictive/10.1117/1.JATIS.4.1.019001.pdf

Example Transmitters

Case	Laser Power	λ_{tx}	Range	Throughput	θ	tx jitter	m	band	
	W	nm	km		"	"	s		
Ι	50.0	980	49000	0.05	1.93	0.005	-7.5	z'	
Π	10.0	980.0	43184.0	0.05	12.49	0.1	-2.0	z'	
III	50.0	532	90263	0.05	1.93	0.005	-5.3	v	
IV	0.02	980	49000	0.05	1.93	0.005	1.0	z'	
v	0.02	532	90263	0.05	1.93	0.005	3.2	v	