Nanosatellite Passive Microwave Radiometers: Microwave Radiometer Technology Acceleration (MiRaTA) and the Micro-sized Microwave Atmospheric Satellite (MicroMAS-2A)

Angie Crews, Cadence Payne, Andrew Kennedy, Bobby Holden, Gregory Allan, Pratik Dave, Thomas Murphy, Kerri Cahoy
MIT STAR Laboratory

William J. Blackwell, Vince Leslie, Daniel Cousins, Michael DiLiberto, Idahosa Osaretin, Adam Milstein, Michael Shields, Erin Main, Mike Diliberto
MIT Lincoln Laboratory

Michael Grant, NASA Langley
Rebecca Bishop, The Aerospace Corp.

May 2nd, 2018
Overview

• Motivation
• MiRaTA Overview
• MiRaTA Status
• MicroMAS-2A Overview
• MicroMAS-2A Status
Motivation: Predicting the Weather

- The US derives $32B of value from weather forecasts annually\(^1\)
- Severe weather events cost the US $313.5B in 2017\(^2\)
- Satellites that observe Earth drive the forecasts
- Need to observe the entire Earth, all the time, with quick availability, of temperature, water vapor, and cloud ice
Roadmap to a Microwave Radiometer Constellation

<table>
<thead>
<tr>
<th>MicroMAS-1</th>
<th>MiRaTA</th>
<th>MicroMAS-2A & 2B</th>
<th>TROPICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning 3U CubeSat</td>
<td>Pitch-up 3U CubeSat</td>
<td>Scanning 3U CubeSat</td>
<td>Selected for EVI-3</td>
</tr>
<tr>
<td>Intended to measure 3D</td>
<td>To measure temperature,</td>
<td>To measure temperature,</td>
<td>6 CubeSats (3U) in three</td>
</tr>
<tr>
<td>temperature</td>
<td>water vapor, and cloud ice</td>
<td>water vapor, and cloud ice</td>
<td>orbital planes</td>
</tr>
<tr>
<td>Launched in July 2014</td>
<td>GPS radio occultation to</td>
<td>MM-2A: January 2018</td>
<td>30-minute revisit</td>
</tr>
<tr>
<td>ISS released it March 2015</td>
<td>enable <1 K calibration</td>
<td>MM-2B: Fall 2018</td>
<td>2020 launch</td>
</tr>
<tr>
<td>Three successful contacts</td>
<td>Launched November 2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>before radio failed</td>
<td>with JPSS-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MiRaTA

- ~52-58 GHz (temperature, V-band)
- ~175-191 GHz (water vapor, G-band)
- ~206-208 GHz (cloud ice, G-band)

MiRaTA—~52-58 GHz (temperature, V-band) ~175-191 GHz (water vapor, G-band) ~206-208 GHz (cloud ice, G-band)

MiRaTA

- ~52-58 GHz (temperature, V-band)
- ~175-191 GHz (water vapor, G-band)
- ~206-208 GHz (cloud ice, G-band)

NASA ESTO

- MM-2A: January 2018
- MM-2B: Fall 2018

NASA EVI-3

- Earth System Science Pathfinder
- Science Mission Directorate

This work was supported by a NASA Space Technology Research Fellowship.
Mission Goals

- Flight test new ultra-compact, low-power radiometer
- Flight test new GPS receiver and patch antenna array
- Demonstrate novel radiometer calibration using GPS Radio Occultation (GPSRO) measurements

MiRaTA Overview

3U CubeSat bus:
- Custom avionics/comm
- 3-axis-stabilized ADCS
- 25 W solar power generation and 20 W-hr battery capacity
- Custom 3U chassis

3 band microwave radiometer:
- ~60 GHz V-band (temperature)
- ~183 GHz G-band (water vapor)
- ~207 GHz G-band (cloud ice)

Compact TEC and Atmosphere GPS Sensor:
- GPSRO of L1 and L2 frequencies
- Temp, pressure, water vapor

MiRaTA Team & Key Dates

Delivery – Q2 2017
Launched – Nov 18th 2017

The MiRaTA team of MIT/LL professionals & MIT grad students

MiRaTA’s atmospheric sensing technology will enable low-cost constellation systems that could offer unprecedented temporal and spatial resolution for weather imaging. Future TROPICS mission shown above.
MiRaTA Status

As Built

Launched with JPSS-1

Nov 18, 2017

This work was supported by a NASA Space Technology Research Fellowship.
MiRaTA Telemetry

Bus Voltages

Panel Temperatures

This work was supported by a NASA Space Technology Research Fellowship.
MiRaTA Telemetry

Magnetometer/ Bdot Checks

Sign/sanity check: Bdot should \(\approx\) equal \(B \times \omega\) (confirmed)

Image: A. Millstein

This work was supported by a NASA Space Technology Research Fellowship.
After tuning, attitude estimation error improves to within ~15 degrees in this dataset, though with slower convergence.

Image: A. Millstein

This work was supported by a NASA Space Technology Research Fellowship.
MiRaTA Status

• Launch Nov. 18, 2017 from Vandenberg
 – First contact Nov. 21 from Wallops to primary Cadet UHF radio
 – Then contact to low-rate backup UHF radio at MIT Campus
 – Solar panels deployed
 – Power system nominal
• Early Orbit Operations
 – Allowed to remain tumbling (goal of testing payload during tumble to sweep Earth/space)
 • Tumble rate < 2 minutes
 – Some IMU PDU faults (similar to ground test during Cadet radio Tx)
 – Some EPS faults (on ground, were sometimes due to timing jitter)
 – Cadet UHF Radio nominal
 – Turned on MAI, obtained sensor data, did not spin up wheels yet
 – Checked queued commanding (commanding components on/off with timer)
 – Turned on Payload PNT mode, tumbling too fast for GPS receiver to lock (did get GPS time)
 – Turned on Payload Science mode, after completing 20 minutes in Science mode S/C went to Safe and reset due to low battery voltage (stale EPS TLM I2C at microcontroller, OBC)
 – Lost contact with spacecraft primary radio on Dec 14th before downlink of Payload data
 – Was only able to re-establish contact with low-rate backup radio (on 3.3 V) from Campus
 • On-board Computer (OBC) not responsive to attempted resets
 – Reprogram of backup radio to sense voltage rails attempted on January 25th
 – Reprogram unsuccessful; was last contact with spacecraft
 – Regular contact attempts since last contact
 – Anomaly investigation ongoing, possible anomaly with OBC or EPS
Overview

- Motivation
- MiRaTA Overview
- MiRaTA Status
- **MicroMAS-2A Overview**
- MicroMAS-2A Status
MicroMAS: Micro-sized Microwave Atmospheric Satellite

- **MicroMAS-1**:
 - 3U dual-spinner CubeSat
 - High resolution cross track spectrometer
 - 9 Channels in 118 GHz band

- **MicroMAS-2 is a follow-up mission to MicroMAS-1**:
 - 3U dual-spinner CubeSat
 - High resolution cross track spectrometer
 - 10 Channels, 4 bands
 - 89 GHz – water vapor
 - 207 GHz – water vapor
 - 118 GHz – temperature, pressure, precipitation
 - 183 GHz – humidity and precipitation
 - Beam width of 3°
 - Swath of 2500 km; nadir resolution of 20 km
 - MM-2A launched Jan 11th 2018
 - MM-2B launch fall 2018

This work was supported by a NASA Space Technology Research Fellowship.
First-Light Tumble Data
6-RPM Scan Rate

This work was supported by a NASA Space Technology Research Fellowship.
MicroMAS-2A 90 GHz & 183 GHz

- 6 RPM Scan Rate (non-contiguous scans)
- 90 GHz water vapor
- 183 GHz precipitation and humidity
MicroMAS-2A 118 GHz

- 6 RPM Scan Rate (non-contiguous scans)
- 118 GHz temperature, pressure, precipitation
MicroMAS-2A Sun Measurements

3.0 Deg. FWHM

MM-2a 93.6 GHz Antenna Temp. [kelvins]

2.4 Deg.

MM-2a 118.64 GHz Antenna Temp. [kelvins]

1.6 Deg.

MM-2a 183.31 ± 7 GHz Antenna Temp. [kelvins]

Sun is ~0.5 deg. disc

This work was supported by a NASA Space Technology Research Fellowship.
MicroMAS-2A Scan-Angle Average Radiances

This work was supported by a NASA Space Technology Research Fellowship.
MicroMAS-2A and ATMS Comparison

M. DiLiberto, R. V. Leslie, MIT LL

This work was supported by a NASA Space Technology Research Fellowship.
MicroMAS-2A and ATMS Footprint Comparison

ATMS V/W band
MM-2A W band
MM-2A F band
ATMS G band
MM-2A 183 GHz (G band)
MM-2A 205 GHz (G band)
Radiometric Bias Validation

- Community Radiative Transfer Model (CRTM) is used with GPS Radio Occultation (GPSRO) atmospheric profiles to provide simulated brightness temperatures.

- Of the 15 possible GPSRO matchups with the MM-2A data, 8 were acceptable for radiometric bias validation.
Summary

MiRaTA built, tested and flown and initial engineering data was acquired.

MiRaTA payload science data was not acquired due to an anomaly; investigation is nearing conclusion.

MM-2A built, tested and flown with ongoing checkout.

Initial data from MM-2A looks promising.

Future work will provide radiometric bias validation for MM-2A data using GPSRO, radiosondes, and NWP models.
MiRaTA Mission

MiRaTA: Microwave Radiometer Technology Acceleration

• Two Payloads:
 1) Microwave Radiometer
 • 10 Channels
 • 52-58 GHz – Temperature
 • 175-191 GHz – Humidity
 • ~206-208 GHz – Cloud Ice
 2) CTAGS: Compact Total Electron
 Content Atmospheric GPSRO System
 • The Aerospace Corporation (R. Bishop)

• Advance TRL from 5 to 7 for:
 – IF Spectrometer (Radiometer Payload)
 – G-band Mixer (Radiometer Payload)
 – GPSRO Receiver (CTAGS Payload)
• Calibrate microwave radiometer using GPS radio occultation

~ 10 minute maneuver
0.5° / sec rate

This work was supported by a NASA Space Technology Research Fellowship.
MicroMAS-2A Diagnostic Image

- Tumble period: 9 sec. (normal scanning is 2 sec)
- Safe mode is asynchronous sampling
- Outliners removed in W & G-band channels
- Interpolated to 2/236 sampling rate
- Calibrated using ND (fixed pre-launch room temp. radiance)
MicroMAS-2A Diagnostic Image

This work was supported by a NASA Space Technology Research Fellowship.