

2018 CubeSat Developers Workshop

Development status of Software-Configurable Interface Board for 1U CubeSat

Turtogtokh Tumenjargal,

Sangkyun Kim, Yasuhiro Tokunaga, George Maeda, Shinichi Yoshida*, Takeyuki Handa*, Hirokazu Masui and Mengu Cho

Laboratory of Spacecraft Environment Interaction Engineering (LaSEINE), Kyushu Institute of Technology

*Sagami Tsushin Co., Ltd

April 30 – May 2, 2018

Focus of this work

How do we reduce development time of CubeSat project?
How to reduce workmanship error due to interface?

BIRDS CubeSat Projects at Kyutech

- Deployed from ISS, July 7, 2017
- Operational phase

- 🖵 Oct, 2016
 - **Three 1U CubeSats**
- 10 students from 4 countries
- Will be deployed from ISS, 2018
- Waiting for launch

BIRDS-3

🖵 Oct, 2017

- **Three 1U CubeSats**
- **7** students from 4

countries

- Will be deployed from ISS, 2019
- Development phase

... learn the whole process of satellite development, foundation of sustainable space program and international human network to assist the infant space programs among each other.

BIRDS Bus system

LaSEINE, Kyushu Institute of Technology

5/1/2018

BIRDS-1 Backplane interface board

Lessons learned from BIRDS

Different missions and payloads require different interface connection

Number of connection changed on backplane	Not modified	Added and removed	Final connections
BIRDS-1 from UWE 3	82	216	109
BIRDS-2 from BIRDS-1	81	55	114
SPATIUM from BIRDS-1	22	126	61

Connections – routing on the PCB

We need very **high flexibility** which could be utilized for **different CubeSat missions**

Software Configurable Interface Board (SoftCIB)

Concept of SoftCIB - Hardware and Software Codesign

Merits

- □ No Harnesses and easy to assemble/disassemble
- □ No need to develop new interface board for every CubeSat mission
 - One design can be used for many different mission (Design changes always takes time)
- □ Interface defined by software
 - Any modification or changes with most of the digital signal line can be done in **one hour** or **less**
- □ There is no difficulties with software (simple)

Demerits

- □ Active semiconductor device operating on the interface board
 - Power consumption
 - □ Risks due to space environment (Radiation and Thermal)

Design Requirements for SoftCIB

- Main device shall be Programmable logic Device (i.e., FPGA or CPLD)
- Maximum power consumption shall be less than
 200mW
- Mechanical design similar to 1U CubeSats of BIRDS-1
- Same 50 pin connectors shall be used for subsystem connectors
- Shall have minimum number of permanent hardware connection for critical connection
- Power lines shall be handled by permanent hardware connection

LaSEINE, Kyushu Institute of Technology

SoftCIB – Block diagram

5/1/2018

Prototype board

- Functional tests have done and no failure or malfunction recorded
- Total power consumption during the test was 27mW to 36mW

Simplest software in VHDL

Hot/Cold start

Temperature profile of Hot/Cold start test

LaSEINE, Kyushu Institute of Technology

TID Radiation test & result

Test criteria, condition:

• CPLD shall survive at level of TID defined by ISO 19683:2017 standard

Estimated radiation dose

Test article LC4256ZE7TN144I	Distance from the radiation source (cm)	Radiation dose (krad)
Sample 1	65	30
Sample 2	120	10 (requirement)
Sample 3	180	5
Test site	Center for Accelerator and Beam Applied Science, Kyushu University	
Radiation source		Cobalt-60

• All CPLDs operated normally under radiation during the test (up to 30krad)

LaSEINE, Kyushu Institute of Technology

SEE test for CPLD

- Test purpose:
 - Detect SEL by current measurement
 - Observe SEU by bit changes in EEPROM
 - Study a behavior of SEL current
- Test article:
 - Lattice ispMACH4000ZE family LC4256ZE7TN144I
 - Plastic package need to be removed
 - Total four samples were tested (all CPLDs are from lot).
- Testing Facility:
 - Kyoto University Research Reactor Institute
- Radiation source:
 - Heavy ions from californium-252 (²⁵²Cf)

LaSEINE, Kyushu Institute of Technology

Test setup for SEE

LaSEINE, Kyushu Institute of Technology

5/1/2018

Result of SEL test (2/3)

5/1/2018

Conclusions

- Software Configurable Interface Board (SoftCIB) is introduced and validated
- BBM and Prototype boards were developed to verify the design requirements, and number of tests were carried out.
- Based on test result, selected CPLD have enough strength against TID in LEO.
- SEE Radiation test for CPLD were carried out. Power reset will be needed to recover from SEL state, however SEL current increases were not severe
- One of the BIRDS-3 CubeSat will demonstrate SoftCIB in orbit. On orbit results will be compared with other two satellites of BIRDS-3.

LaSEINE, Kyushu Institute of Technology

Thank you for your attention!

The results have been supported by **"World-Class Space Human Resource Development via International Collaboration Work on Satellite Project**", the Ministry of Education, Culture, Sports, Science and Technology (MEXT), JAPAN.

Contact info: Prof. Mengu Cho (cho[at]ele.kyutech.ac.jp) Laboratory of Spacecraft Environment Interaction Engineering (LaSEINE), Kyushu Institute of Technology

LaSEINE, Kyushu Institute of Technology

Appendix

LaSEINE, Kyushu Institute of Technology

Missions

- Taking photograph of homeland (CAM)
- Digi-singer, song exchange (SNG)
- Single Event Latch-up measurement (SEL)
- Determination of Satellite Precise Location (POS) without GPS
- Atmospheric Density Measurement (ATM)
- Demonstration of Ground Station Network for CubeSat Constellation (NET)

Features

- Constellation of five (5) identical 1U CubeSat
- Share same frequency for TM & TC (UHF/VHF)
- Less harness design using Backplane style introduced by UWE-3

- Less demand for changing power lines (3.3V, 5V, Unregulated Voltage)
- High demand of changing digital signal connections (electrical)
- High demand for changing position of the connectors (physical)
- Reducing harnesses by using PCB is good trend (contributed to control quality)
- Easy to integrate and disintegrate the module boards
 - Structure design may affect to easiness of Assembly and Disassembly.

LaSEINE, Kyushu Institute of Technology

SEE radiation test setup

Result of SEL test (3/3)

- Current increase due to SEL is observed
- In total 16 event were observed for four samples
- Current change was 13mA to 30mA
- Current became normal after power reset
- No SEU observed for all four CPLD.

Number of data	16
Mean SEL occurrence time(sec)	996.3
Standard deviation	915.4
Max (sec)	3540
Min (sec)	47

LaSEINE, Kyushu Institute of Technology