LetSat-1: A GPU Tech Demo and Image-Based Navigation System

LeTourneau University

Clifford White Chandler Griscom cliff@letsat.org chandler@letsat.org

Outline

- Mission
- Description of Technology
 - Payload Hardware
 - Payload Software
- Concept of Operations
- Future Applications
- Timeline

LetSat-1 Mission

- Demonstrate commercial GPU hardware on a LEO platform
- Develop a software suite utilizing the GPU to determine position and attitude of the satellite without ground station or GPS contact

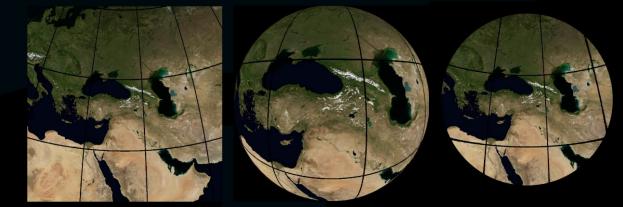
Description of Technology

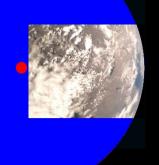
- Payload Hardware:
 - Two NVIDIA Tegra K1 GPUs, with associated peripherals
 - Crystalspace CAM1U, fitted with a fisheye lens
- Payload Software:
 - Images processed by GPU to recognize surface features
 - Surface features compared to reference map to determine position

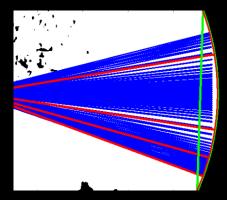
Description of Tech – Payload Hardware

- NVIDIA Tegra-K1 GPU
 - Integrated onto ruggedized COM Express module by Abaco Systems
 - Two identical modules, second for redundancy
- Crystalspace CAM1U, with fisheye lens
 - Can image Earth's entire sphere
- Custom carrier boards
 - Mounts GPU module and SSD
 - Interfaces with satellite bus

Description of Tech – NVIDIA Tegra KI

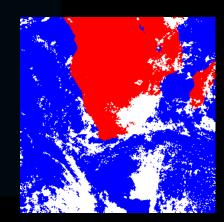

- 192 GPU CUDA Cores
- Quad-core ARM Cortex A15 CPU
- Linux OS Ubuntu modified for GPU use
- Power consumption: 6 watts at idle, 13 watts maximum
- Ruggedized, yet small form factor mCOM10
- 84mm x 55mm x 13mm
- Mil-spec thermal and vibration ratings




Description of Tech – Payload Software

- Distortion removal
 - Trigonometric computation on parallel CPU
 - Remapping on GPU

- Attitude and Altitude Determination
 - Algorithmic approach on CPU



Description of Tech – Payload Software

- Neural Network Components
 - Pixel-by-pixel classification of image data
 - Cloud filtering and masking

- Lat/Long Determination
 - Database of panoramic images
 - Keypoints, probability-based comparisons

Concept of Operations

ADCS Requirements:

- Solar panels facing Sun
- Camera pointing nadir during imaging passes
- ADCS Hardware:
 - Course sun sensors
 - MEMS gyroscopes, accelerometers
 - Camera as earth-tracker
 - Several low-resolution images of the earth are taken in succession
 - Center-detection done live for nadir-pointing modes
 - Mag-torquers

Concept of Operations

- Imaging Passes at "Local Noon":
 - GPU boots slightly before local noon
 - Attitude control rotates satellite to point camera to nadir
 - Image captured for processing
 - Satellite rotates back to solar panels facing Sun
 - Image processed, if it's useful
 - GPU shutdown
 - Results downlinked during next ground station pass

Applications – GPU Hardware

- Space-side processing of science data
 - Reduces required downlink bandwidth
- Neural networks / artificial intelligence / machine learning
- Computer vision
- Image processing
- Pattern recognition
- Others

Applications – Image-Based Navigation

- Interplanetary probes
 - Works around any orbital object with permanent terrain
 - Combine with pulsar-based Galactic Positioning System
 - Can react faster than Earth-In-The-Loop systems
- Missions where ground station and GPS contact is limited
- Extra layers of redundancy

Timeline

• CDR:

- Beginning:
 - g: March 2017 September 2018
- Launch:
- Operations:

Early 2020 Launch through re-entry

LetSat-1: A GPU Tech Demo and Image-Based Navigation System

LeTourneau University

Clifford White Chandler Griscom cliff@letsat.org chandler@letsat.org