Drag De-Orbit Device (D3) Mission to Demonstrate Controlled Re-Entry using Aerodynamic Drag

Sanny Omar

David Guglielmo

Riccardo Bevilacqua

Drag De-Orbit Device (D3) Project Objectives

- Design a drag device to De-Orbit a 12U (15 kg) satellite from 700 km in 25 years (0.5 m² required)
 - Most Low Earth Orbit (LEO) spacecraft do not have thrusters to de-orbit with
- Design a control algorithm by which the drag device can be deployed and retracted to target a de-orbit location, perform collision avoidance, and maintain ram-alignment
- Manufacture drag device
- Test the Drag De-Orbit Device (D3) in flight

Algorithms Overview

- De-orbit point "Targeting Algorithm" has three components
- Guidance Generation Algorithm
 - Computes the ballistic coefficient (C_b) over time profile and corresponding trajectory that a satellite must follow to de-orbit in a desired location
- Navigation Algorithm with Kalman Filtering
 - Given noisy GPS measurements, estimates the position and velocity of the spacecraft relative to the guidance
- Guidance Tracking Algorithm
 - Based on the relative position and velocity, computes the ballistic coefficient that spacecraft must maintain to return to the guidance
 - Continues LQR-based full state feedback

Kalman Filter with Measurement Noise, Bias, and Density Error

- Motor runs 3.5% of the time assuming 240 seconds for full deployment
 - 5% actuator deadband
- Truly a "worst case"
- Tracking to 90 km altitude

Monte Carlo Simulations

Variable	Range	Probability Distribution					
Semi Major Axis	[6698, 6718] km	Uniform					
True Anomaly	[0, 360] degrees	Uniform					
Eccentricity	[0, .004]	Uniform					
Right Ascension	[0, 360] degrees	Uniform					
Argument of the Periapsis	[0, 360] degrees	Uniform					
Inclination	[1, 97] degrees	Uniform					
Impact Latitude	[0, max(inclination, 180- inclination) 1] degrees	Uniform					
Impact Longitude	[-180, 180] degrees	Uniform					
Cb _{max}	[.033, .067]	Uniform					
Cb _{min}	[.0053, .027]	Uniform					
epoch	[11/1/2003, 11/1/2014]	Uniform					

1,000 guidance generation and tracking simulations were conducted for the randomly varying simulation parameters in the table above.

Guidance Generation and Tracking MC Results

- Guidance generation algorithm calculates a trajectory that the spacecraft must follow to reach a desired de-orbit location
- Guidance tracking feedback control algorithm modulates ballistic coefficient to ensure this trajectory is followed despite drag force uncertainties
- Average guidance error of 16 km and average final tracking error of 1.1 km
 - Tracking down to 120 km geodetic altitude

D3 Device Overview

- Drag De-Orbit Device (D3) attaches to existing CubeSats to facilitate de-orbit of a 12U, 15 kg satellite in 25 years from a 700 km circular orbit
- D3 is retractable and facilitates re-entry point targeting
- Re-entry point targeting algorithms run onboard D3 microcontroller

D3 is Compatible With CubeSat Design Spec

D3 Installed on CubeSat

Four deployers are attached to make the drag device

- Each deployer is actuated independently
- Five magnetorquers are used to damp rotational velocity

D3 Deployer

Original Version of Deployer

Latest Version Includes Rollers and Encoder

Deployer Uses Faulhaber 1516-006SR Motor with 15/5S 262:1 gearbox to Drive Boom

D3 Control Board Design

D3 Control Board Pin Header Interface

2	4 2	6 5	8 7	10	12	14 12	16 15	18	20 10	22 21	24 23	26	28 27	30 20	32 21	34 33	36 35	38 37	40 20	42 41	44 43	46 45	48 47	50 40	52 51	F	12
	3	5	/	9	±.±	13	L)	1/	19		23	25	21	29	21	55	33	57	39	41	43	43	47	49	JT		
2	Δ	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	ΔΔ	46	48	50	52		
1	3	5	7	9	11	13	15	17	19	21	23	25	20	29	31	33	35	37	39	41	43	45	47	49	51	F	11
	Kev																										
		USB Charge (H1-32)																									
		I2C Data (H1-41)																									
		I2C Clock (H1-43)																									
		Ground (H2-(9, 14, 17, 29, 30, 32, 47, 48))																									
		5V Regulated Power (H2-25, H2-26)																									
		3.3V Regulated Power (H2-27, H2-28)																									
		GPS	Seri	ial da	ata r	ecei	verp	oin (I	H1-1	9)																	
		GPS Power on Signal (H1-23)																									
		GPS	Pov	verc	off Si	gnal	(H1	-21)																			
		GPS	Tim	ing I	Pin (H1-4	15)																				
		GPS Position Fix Indicator (H1-49)																									
		Transmit Empty (H1-1)																									
		Transmit Ready (H1-5)																									
		Receive Ready (H1-6)																									
		Radio Reset (H1-2)																									
		Inde	eper	nden	t DT	MF F	Pins	(H2-	(49-5	52))																	

CubeSat Mission Requirements

Success Level and Description	Demonstration	Verification Criteria
Required: D3 CubeSat ejects from deployer	Prerequisite.	Track CubeSat with radar.Confirmation of launch from vehicle.
Required: Ground systems make contact with CubeSat	Prerequisite.	Make radio contact.
D3 booms are used to change the cross- wind area of the CubeSat	Boom can operate in LEO.	 Commanded motor position telemetry. Track CubeSat with radar and look for drag changes.
D3 stabilizes attitude of CubeSat	Booms and magnetorquers can be used to stabilize attitude in LEO.	 Commanded motor position telemetry. Magnetometer telemetry.
D3 device is used to actuate a desired maneuver	D3 can be used to actuate a desired maneuver.	JSpOC radar data and CubeSat GPS data.
D3 device is used to deorbit within a desired interval	Ability of D3 to deorbit a CubeSat as desired.	JSpOC radar data and CubeSat GPS data.
Maximum: d3 deorbits to within 1300km of a desired target interface point at 90km altitude.	Ability of D3 to deorbit the CubeSat to a safe location.	Track CubeSat with radar.

Spacecraft Design CAD Model

Hardware Configuration

Component	Options	Mass (g)	Avg power use (mW)	Size (mm^3)	Cost (USD)	
EPS	Clyde Space 3 rd generation 1U EPS	86	160	95 x 90 x 15.4	4400	
Battery	Clyde Space 10 Whr Battery	156	0	95 x 90 x 10	1800	
Radio	Clyde Space CPUT UTRX half duplex radio	90	250 rx, 4000 tx, 333 avg with 30 min daily tx	96 x 90 x 10	8600	
Comm. Antenna	GomSpace NanoCom ANT430	30	0	100 x 100 x 4	6325	
D3 deployers	Custom	1100	200 avg, 15000 peak	100 x 100 x 69	2000	
D3 magnetorquers	Custom	101	Variable	Integrated	100	
D3 Microcontroller	BeagleBone Black Industrial	24	1000	87 x 55 x 10	100	
Solar Panels	DHV Technologies four 1.5U panels on long edges		-4240 max gen	170.25 x 83 x 1		
	DHV Technologies two 1U panels on short edges	100	-2120 max gen	98 x 98 x 1	21150	
Structure	ClydeSpace 1U structure	200	0	100 x 100 x 113.5	2560	
D3 adapter stage	Custom	200	0	100 x 100 51	200	
Navigation	SkyFox piNav-NG	100	139	75 x 35 x 12.5	9300	
GPS Antenna	SkyFox piPATCH	25	100	98 x 98 x 14.5	2237	
Totals		2212	1932 avg cont use	10 x 10 x 227	58722	

Backup slides

Maximizing Miss Distances using Aerodynamic Drag for 400 and 600 km Circular Orbits

Guidance Generation Algorithm

- Given a numerically propagated decay trajectory, it is possible to analytically estimate the C_b profile needed to de-orbit in a desired location
- Receding horizon guidance generation strategy
 - Trajectory propagated with analytical C_b profile for t_q seconds comprises first part of guidance
 - t_g is 1/10 of orbit life on each step
 - $\check{C_b}$ is adjusted during propagation to ensure work done by drag consistent with analytical solution
 - New \tilde{C}_b profile analytically calculated, propagated for t_g seconds, and resulting trajectory appended to guidance
 - Procedure continues until trajectory found that yields low enough guidance error or less than certain amount (1 day) of orbit life remaining

18

Guidance Generation Analytical Solution

- Must control de-orbit latitude and longitude at given geocentric altitude
 - Final time free
- Control parameters are
 - t_{swap} = time until ballistic coefficient is changed
 - C_{b1} = ballistic coefficient from t_0 to t_{swap}
 - C_{b2}^{-} = ballistic coefficient from t_{swap} to t_{term}
 - Spacecraft maintains some predetermined drag profile after t_{term}
- Given enough time, variation of these parameters is sufficient to target any deorbit point with latitude below the orbit inclination
- Analytical Solution Assumptions
 - Circular orbit around spherical Earth
 - Density is a function of semi major axis
 - If density is a function of altitude in a circular orbit around a spherical Earth, density is also a function of semi major axis
 - De-Orbit point is before aerodynamic forces exceed gravitational forces (~70 km altitude)
 - orbital elements still valid
- Receding horizon strategy eliminates errors resulting from these assumptions

Analytical Mapping from Initial to Final State

- Fundamental building block of analytical solution
- If a satellite with C_{b1} takes time t_1 to achieve some change in semi major axis and experiences a change in true anomaly $\Delta \theta_1$ during this time, then for a satellite with the same initial conditions and C_{b2}

$$t_2 = \frac{C_{b1}t_1}{C_{b2}}$$

$$\Delta \theta_2 = \frac{C_{b1} \Delta \theta_1}{C_{b2}}$$

• It also proves that the average orbital angular velocity $\omega_{avg} = \frac{\Delta \theta}{\Delta t}$ for a given change in semi major axis is independent of ballistic coefficient

Characterizing New Trajectory Based on Old Trajectory

- Divide trajectories into four phases
- Phases go from same initial to final semi major axes in old and new trajectories
 - C_b values are unchanging in each phase
- Average angular velocity in each phase constant between old and new trajectories
- Time, raan change, and change in true anomaly associated with each phase in the new trajectory calculated based on corresponding phase in old trajectory and analytical relations
- Both spacecraft assumed to follow the same decay profile after t_{term} (terminal point)
- Time and orbital elements of the new spacecraft at de-orbit point can be calculated and used to calculate de-orbit latitude and longitude.

Calculating New Control Parameters

• Control parameters to achieve desired $\Delta \theta_t$ and Δt_t $C_{had}(\Delta t_{ad} \Delta \theta_{1d} - \Delta t_{ad} \Delta \theta_{ad})$

$$C_{b2} = \frac{C_{b20}(\Delta t_{20}\Delta\theta_{10} - \Delta t_{10}\Delta\theta_{20})}{\Delta t_t \Delta\theta_{10} - \Delta t_{10}\Delta\theta_t}$$

$$C_{b1} = \frac{C_{b10}(\Delta t_{10}\Delta\theta_{20} - \Delta t_{20}\Delta\theta_t)}{\Delta t_t \Delta\theta_{20} - \Delta t_{20}\Delta\theta_t}$$

$$t_{swap} = \frac{\Delta t_{10}C_{b10}}{C_{b1}}$$

- Compute control solution for multiple initial values of t_{swap} to explore full control space
- Select solution with maximum remaining orbit lifetime controllability

Discrete Time Extended Kalman Filter for LQR Guidance Tracking

- State will be relative position and velocity
 - Measurement z = relative position and velocity derived from GPS measurement and guidance state

$$z_i = G x_i, x_i \approx \Phi_i x_{i-1}$$

$$G = [I]_{4x4}, \Phi_i = e^{(A-BK)t}$$

- W = measurement noise covariance
- Q = Process noise covariance

 $\Lambda = \text{Fading term}$

f represents numerical propagation from t_i to t_{i-1}

 x_1^- and P_i^- are a-priori state and state error covariance estimates

$$x_{i}^{-} = f(t_{i}, t_{i-1}, x_{i-1}^{+})$$

$$P_{i}^{-} = \Phi_{i}P_{i-1}^{+}\Phi_{i}^{T} + Q$$

$$S = GP_{i}^{-}G^{T} + W$$

$$K_{i} = P_{i}G^{T}(S)^{-1}$$

$$x_{i}^{+} = x_{i}^{-} + K_{i}(z_{i} - Gx_{i}^{-})$$

$$P_{i}^{+} = (I - K_{i}G)P_{i}\Lambda$$

Schweighart Sedwick Relative Motion Equations with Differential Drag

$$\begin{bmatrix} \delta \dot{x} \\ \delta \dot{y} \\ \delta \ddot{x} \\ \delta \ddot{y} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ b & 0 & 0 & a \\ 0 & 0 & -a & 0 \end{bmatrix} \begin{bmatrix} \delta x \\ \delta y \\ \delta \dot{x} \\ \delta \dot{y} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ -\rho v^2 \end{bmatrix} \left(C_{b_{sc}} - C_{b_{guid}} \right)$$
$$\delta \ddot{z} = -n^2 \delta z \text{ (uncontrolled)}$$

24

Full State Feedback Control

$$C_{b_{sc}} = C_{b_{guid}} - K\mathbf{x}$$

$$K = lqr(A, B, Q, R, 0)$$

- System of form $\dot{x} = Ax + Bu$
- R is a 1x1 control weighting matrix
- Q is a 4x4 error penalty matrix
- Gain value K minimizes cost function $J = \int_0^\infty (x^t Q x + u^t R u) dt$