

The DM7 and the Future of High Performance Computing in Space

15th Annual CubeSat Developers Workshop April 30, 2018

<u>Presented By</u>: Aaron Zucherman Graduate Research Assistant DM Student Team Lead MSU Space Science Center azucherman@moreheadstate.edu

<u>Co-Authors:</u> Dr. Benjamin Malphrus Dr. John Samson Christian Ortiz Huertas Michael Snyder Kenneth Carroll Christopher Coleman

- DM (Dependable Multiprocessor) technology
- DM Development
- DM7 ISS flight experiment
 - Experiment
 - Lessons learned
- Ongoing & Future Work
- Applications
- Summary and Conclusion

DM Technology

3

- DM (Dependable Multiprocessor) technology is a cluster of high-performance COTS processors that can fly in space
- Originally developed by Honeywell for NASA
- Hardware architecture and software framework
- DM Middleware (DMM) Software-enhanced radiation/fault tolerance
 - Self-checking, triple modular redundancy and algorithm-based fault tolerance
- Hardware, platform, & application-independent
 - Supports homogeneous and heterogenous processing operations
 - GPP, DSP, GPU, FPGA, neural processing, and multicore
- User-configurable, environmental and mission adaptive fault tolerance
- Operates under a system controller via high speed interconnect

DM Flight System

- New Millennium Program ST-8 project
 - TRL6
 - Successful operation in a radiation environment
- Demonstrated:
 - High performance and availability
 - Timely and correct delivery of data
 - Consistency with performance models
- Multiple applications:
 - Hyper-Spectral Imaging
 - Synthetic Aperture Radar
 - Astrophysics applications
 > (CRBLASTER, QLWFPC2)
 - FFTs, matrix operations, etc.
- Easy to Use/Low Overhead:
 - Independent 3rd party ports
 - <10% overhead throughput and memory of application

DM TRL6 Flight Experiment Testbed

- Morehead State University (MSU) and Honeywell developed the DM into the CubeSat formfactor
- DM Cube
 - 1/3 U
 - 120 grams
 - 8 Computer-on-Modules (COM)
- Gumstix Overo® WaterSTORM COM
 - 800 MHz each
 - 256 MB RAM, 256 MB Flash each

DM CubeSat payload processor flight prototype fabricated by MSU 5

- Hosted on the NanoRacks
 External Platform (NREP)
- Sponsored by CASIS
- Center for the Advancement of Science in Space
- Goals:
 - 1. Demonstrate DM operation in a real space environment
 - 2. Achieve TRL7 for DM technology
 - 3. Validate the predictive DM performance models

1. System-level Radiation Performance Mission Experiment

- Logic Test, LUD, Golden Standard (GS) LUD compare
- 2. System Capabilities Mission Experiment
 - MM, FFT, SAR, HSI, LUD, Logic Test, CRBLASTER with a full range of DM fault tolerance modes

3. Camera Mission Experiment

100x and 1000x compressed images captured

All data was continuously downlinked to the ground

DM7 Flight Experiment Configuration

DM7 Mission Timeline

- Launched to the ISS on HTV6 on Dec 9, 2016
- NREP Mission 1 / Mission 2 switch-over took place on Apr 27, 2017
- Activated on Apr 28, 2017 and started streaming downlink telemetry
- Minor downlink issues were quickly remedied
- Initial on-orbit testing demonstrating all 3 DM7 experiment missions
- Some anomalies were experienced
- 6-month experiment ended on Nov 2017
- Continued to down-link health status until powered down on Dec 20, 2017
- NREP Mission 2 / Mission 3 switch-over on Jan 4, 2018
- Placed in ISS storage
- DM7 to be returned to MSU by end of 2018

Three Successful on-orbit experiments

- DM system measured for availability and computational correctness
- No SEU-induced errors detected
 - Performance consistent with Gumstix ground-based radiation tests
 - No radiation-induced latch-up
 - Low SEE rates

DM7 Montage

- Montage of 29 consecutive 100x compression snapshots created by Dr. Conner (MSU)
- https://www.moreheadstate.edu/College-of-Science/Earth-and-Space-Sciences/Space-Science-Center

- 1st Anomaly: Unexplained cessation of telemetry
 - Power cycling would restore operation
- 2nd Anomaly: Inability to consistently boot-up all four DP nodes
 - Operating with only three processing nodes was not catastrophic
 - System easily capable of handling node failure
 - Loss of one node only reduced the effective system SEU rate by <17%
- After two months of operation:
 - All commands, including the contingency commands had been implemented
 - Good understanding how the DM7 payload was performing on-orbit
- 3rd Anomaly: Loss of Ethernet connectivity after a power cycle
 - Interface could no longer "find" the Ethernet_0 device

- 1. Ensure adequate on-orbit thermal sensing
 - No way to determine thermal conditions on-orbit
- 2. Check and check again
 - Software debug collection still enabled on one DP node
- 3. Remote on-orbit debugging is limited
 - Limited by ISS and NanoRacks schedules
- 4. Retain as much ground testing capability as possible
 - COM's console ports were used during ground testing to analyze processor issues but were capped off for flight.
 - Would have been useful for on-orbit anomaly resolution
- 5. Keep the payload team together

Ongoing and Future Work

- Analysis of the anomalies using experiment data
- Testing DM7 when it is returned to MSU
 - Power and thermal testing
 - Attempt to re-establish Ethernet_0 device connection
- Upgrade DM Cube
 - Redundancy, e.g. ethernet, control, power, etc.
 - Additional on-orbit debugging features
 - Thermal sensing and control
- Improvements to DMM
- Demonstrate application code on new platforms
 - DM-Pi using Raspberry Pi's
 - Rad-hardened Hardware
- DM Cube on several MSU supported CubeSat proposals and studies

DM development workstation at MSU Space Science Center. DM-Pi and other hardware shown

- DM allows CubeSat missions to fly COTS processing technology
- No longer need to fly technologies that are 2 3 generations behind the state of the art terrestrial processing technology
- DM can be used for any mission or application that needs programmable high performance computing

- Reducing downlink bandwidth requirements/usage
 - Real time data, image and video compression
 - On-orbit data mining
- "Smart" Mission operations
 - Multi mission and autonomous control
- Hazardous terrestrial environments
 - e.g. nuclear decommissioning robotics
- Looking for partners who have applications for DM technology
 - If interested please contact: azucherman@moreheadstate.edu
 - Come visit the Morehead State University Booth

- DM is a way to fly a cluster of high-performance COTS Processors for Space
- DM is TRL-7
- Ongoing work to improve DMM middleware and DM cube
- The DM is a low-cost, scalable and high performance processing solution

- The Dependable Multiprocessor effort was funded under NASA NMP ST8 contract NMO-710209
- The DM CubeSat development was funded by Honeywell
- The SMDC TechSat Phase 2 effort was funded under SMDC contract W9113M-08-D-0001/0023
- The DM7 ISS flight experiment effort was performed under CASIS grant GA-2014-149
- The DM7 CASIS project was flown as an ISS National Laboratory flight experiment
- Thanks to NanoRacks personnel for their support during development, pre-flight testing, and on-orbit testing and operation of the DM7 payload
- Thanks to Dataseam for ongoing support

Questions?

Back-up slides

DMM - Dependable Multiprocessor Middleware

The DM Middleware (DMM) is DM technology; DM technology is not the underlying hardware

DM7 Compressed Images

100x compressed image

1000x compressed image

DM7 Camera Image Compression Experiment

* ABS [Raw Image Pixel (x,y) – Compressed Image Pixel (x,y)]

Average difference in pixel value over the entire image (8-bit pixel data; range 0 - 255)

ISS Top View – Aft-Facing Camera View

From NASA ISS Web Site

- Possible MSP430 anomaly
 - During early on-orbit check-out, it appeared that the MSP430 microcontroller failed to issue an initial heartbeat required to start the DM cluster
 - Surprising because of MSP430 space pedigree and the simplicity of the timing circuit which generates the heartbeats
 - Cycling power rectified this apparent anomaly which never happened again
- Possible unknown/unexpected radiation effects
 - Due to limited funding, not all of the components in the DM7 flight system were subjected to pre-flight ground-based radiation testing
 - Only the COM's were radiation tested by Honeywell and Yosemite Space as suitable for flying in space
 - DM7 payload not radiation tested on a systems level
 - Impact of not radiation testing all of the components in the DM7 flight system is uncertain