

# MYSAT-1 – The first UAE CubeSat with a remote sensing and technology demonstration payload

Azza Al Bakr<sup>a</sup>, MYSAT-1 Team<sup>a</sup>

Thu T. Vu<sup>a</sup>, Prashanth R. Marpu<sup>a</sup>, Saif S. Al Mheiri<sup>a</sup>, Efthymios Kontogiannis<sup>b</sup>, Ahmed Al Shaer<sup>b</sup>, Carlos Niederstrasser<sup>c</sup>

<sup>a</sup> Masdar Institute of Science and Technology, Abu Dhabi, UAE, vthu@masdar.ac.ae
<sup>b</sup> AI Yah Satellite Communications Company (Yahsat), Abu Dhabi, UAE, ekontogiannis@yahsat.ae
<sup>c</sup> Orbital ATK, Inc. Dulles, VA, United States, carlos.niederstrasser@orbitalatk.com

### Outline

MYSAT-I

- Who We Are
- MSc Concentration Overview
- MYSAT-1 Mission Objectives
- Program Status
- CubeSat Design
- Other Research Activities





### Who We Are





### **MSc Concentration in Space Systems and Technology**



- Student-driven CubeSat project, part of a joint interdisciplinary graduate space program
- Foster the advanced research areas in space science and technology for development of UAE
- Establishing strong links between the space industry with academic institutions



## Mission Objectives 5

### **Mission & Mission Objectives**

- Education
- Remote sensing
- Technology demonstration







### **Technology Demonstration**

The battery is a coin cell developed at Masdar Institute

The battery is split into two halves:

- One half containing the active Fe<sub>2</sub>O<sub>3</sub>
- Other half containing Lithium Ion





### **Technology Demonstration**

Battery's performance will be tested in space based on State of Charge (SOC) and State of Health (SOH)

| Model          | Mass   | Diameter Thickness |        | Operating<br>temperature range |
|----------------|--------|--------------------|--------|--------------------------------|
| 2032-coin cell | 4.01 g | 20 mm              | 3.2 mm | -10 C to 80 C                  |

| Extra features      | Able to be charge/discharge at high current rate (e.g. at 1C rate) and at the same time has higher specific capacity compared to graphite based anode.           |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Charge Procedure    | Constant-current charge until 3.49 V reached, then constant-voltage charge at 3.49 V until the current goes down to 0.5C value or maximum 15 minutes time limit. |
| Discharge Procedure | Constant current discharge until 0.4 V                                                                                                                           |





Implementation



### **Program Status & Team Structure**



## CubeSat Design



### **Orbit Analysis**



### **Orbital Lifetime**



#### Lifetime of 1U-CubeSat with different altitudes

### **Orbit Analysis**





### CAD view and 3D printed prototype





**Other Research Activities** 

### **Developing Organic Photovoltaic Technologies for CubeSats**





#### Organic photovoltaics (OPV): conductive polymers

#### Advantages:

- Low cost
- Light weight
- Flexible
- High absorption coefficients
- High throughput

Disadvantages:

- Efficiency
- Stability
- Lifetime

Research objectives: Optimization of OPV at Masdar Institute

- Processing conditions
- Novel active layers
- Interlayers

Organic Photovoltaics for Space applications

- Degradation
- Temperature





### **Influence of Fluorinated Additives**

Anionic fluorinated materials (PEDOT:PSS:x):

Perfluorinated ionomer (PFI) & Perfluorooctane surfonic acid (FOS)

The use of PFI or FOS in P3HT:PC<sub>61</sub>BM improves the PCE by approximately 15 % The PCEs for PTB7:PC<sub>71</sub>BM OPVs were improved by approximately 5 or 15 % with PFI or FOS, respectively







### Degradation



Measurements recorded at 30 minute time intervals over 24 hours

 Continuous AM1.5 G illumination at 100 mW/cm<sup>2</sup>

-0-1:8:0.0 1:8:30.0 (m a.em <sup>5</sup>) (۳۸۴۳<sup>°</sup>) ا (m A/cm <sup>2</sup>) 5 mp000000 0.6 0.0 0.6 0.6 Voltage(V) Voltage(V) Voltage (V) t = 0 hrst = 0.5 hrst = 24 hrs

Investigated the dynamics of OPVs containing PFI in the PEDOT:PSS

| Loading (%)      | Jsc (mA/cm²)       | Voc (V)x10 <sup>-1</sup> | FF (%)             | PCE (%)            |
|------------------|--------------------|--------------------------|--------------------|--------------------|
| 1:6:0.0 (0.00)   | 8.84 / 6.72 / 5.43 | 5.89 / 5.70 / 5.55       | 48.6 / 48.1 / 47.1 | 2.53 / 1.85 / 1.42 |
| 1:6:30.0 (81.08) | 8.85 / 8.63 / 6.93 | 6.18 / 6.02 / 5.87       | 54.0 / 52.7 / 52.9 | 2.96 / 2.74 / 2.15 |

### Temperature



|               |      | PCE   | Jsc                   |         |        |
|---------------|------|-------|-----------------------|---------|--------|
| Temperature ( | (°C) | (%)   | (mA/cm <sup>2</sup> ) | Voc (V) | FF (%) |
| Lo (<30)      |      | 1.794 | 9.463                 | 0.4086  | 46.4   |
| Lo (<30)      |      | 1.828 | 9.599                 | 0.4086  | 46.61  |
|               | -30  | 1.862 | 9.74                  | 0.4081  | 46.85  |
|               | -26  | 1.89  | 9.877                 | 0.4077  | 46.95  |
|               | -20  | 1.933 | 10.02                 | 0.4077  | 47.31  |
|               | -11  | 1.971 | 10.211                | 0.4076  | 47.37  |
|               | -5   | 2.011 | 10.322                | 0.4076  | 47.8   |
|               | -1.3 | 2.052 | 10.488                | 0.4077  | 47.98  |
|               | 3    | 2.084 | 10.592                | 0.4073  | 48.29  |
|               | 7.9  | 2.129 | 10.756                | 0.4067  | 48.65  |
| 1             | 3.4  | 2.184 | 10.95                 | 0.4074  | 48.94  |
| 1             | 7.1  | 2.252 | 11.2                  | 0.408   | 49.28  |
|               | 22   | 2.32  | 11.432                | 0.4088  | 49.65  |
| 2             | 26.4 | 2.415 | 11.72                 | 0.409   | 50.32  |
|               | 27   | 2.673 | 12.3                  | 0.4329  | 50.37  |





|                  | PCE   |                           |         |        |
|------------------|-------|---------------------------|---------|--------|
| Temperature (°C) | (%)   | Jsc (mA/cm <sup>2</sup> ) | Voc (V) | FF (%) |
| Lo (<30)         | 3.496 | 12.26                     | 0.6951  | 41.02  |
| -30              | 4.694 | 12.252                    | 0.6911  | 55.44  |
| -28              | 5.406 | 13.61                     | 0.6988  | 56.84  |
| -21              | 5.828 | 14.104                    | 0.6851  | 60.31  |
| -10              | 6.423 | 15.137                    | 0.70423 | 60.25  |
| -1.3             | 6.289 | 16.463                    | 0.7261  | 52.6   |
| 5.7              | 6.923 | 15.741                    | 0.6942  | 63.36  |
| 15.4             | 7.176 | 16.609                    | 0.692   | 62.43  |



#### Conclusion

- The use of different novel active layers and interlayers was investigated in OPV , showing an enhancement in device performance.
- OPV can be possibly used for space applications. Experimental results show an enhancement in device performance, as well the lifetime and stability.

#### **Future work**

- Optimizing OPV using the advanced active layers
- Testing OPV under space environmental conditions i.e. radiation.

