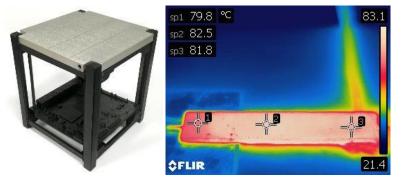
ROCCOR

Development of a lightweight thermal capacitor panel for thermal control of CubeSat applications

Diego A. Arias, Greg Shoukas, Steven Isaacs and Mario Saldana

roccor.com

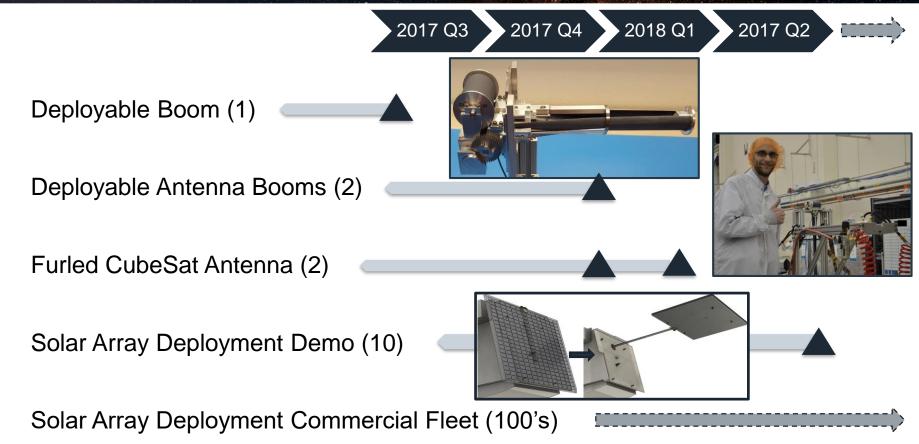
Our Space Related Capabilities


Deployable Systems

Solar Array Deployment Systems, Deployable Antenna, Magnetometers, Specialist ProxOps deployable products

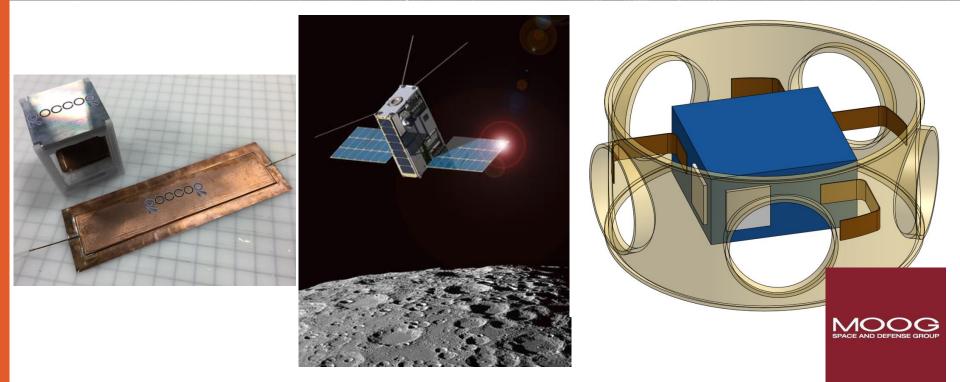
Custom high performance co-engineered deployable devices

ROCCOR



Thermal Management

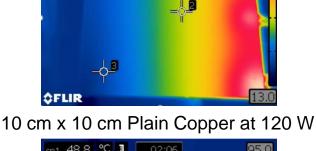
Flat heat pipes, pumped two-phase cooling and thermal capacitors


Two-Phase Electronic Cooling Product Technologies

Roccor Space-Flight Heritage

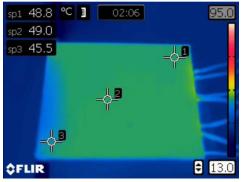
Sample Projects

Thermal solutions for spacecraft in the cubesat to 1,000kg class and beyond₄


Why Two-Phase?

Benefits of two-phase flow:

- »Volume and mass savings \rightarrow SWaP improvement
- »Reduced mass flow rate
- »Lower pressure drops
- »Temperature uniformity among multiple heat sources
- »Able to cool several components in series

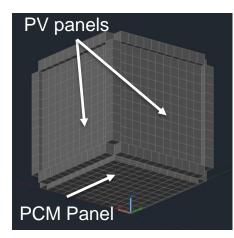

Additional benefits of Roccor's approach:

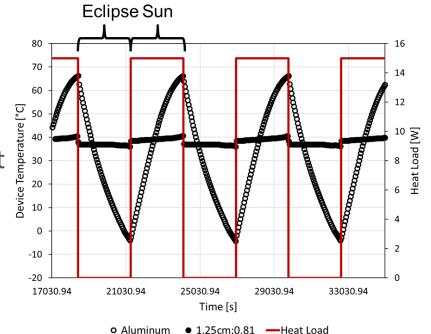
»Scalable manufacturing»Commercial-off-the-shelf materials»Design flexibility

83.1 °C 🛛 🛑 02:01

sp2 58.6 sp3 30.1

10 cm x 10 cm FlatCool at 120 W

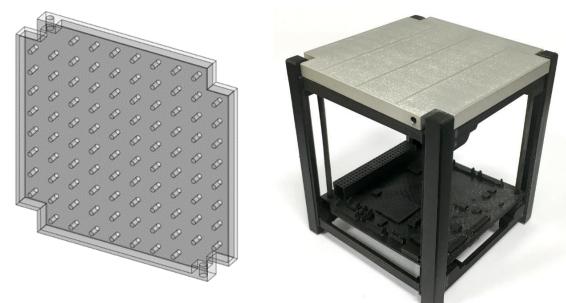



\$ 95.0

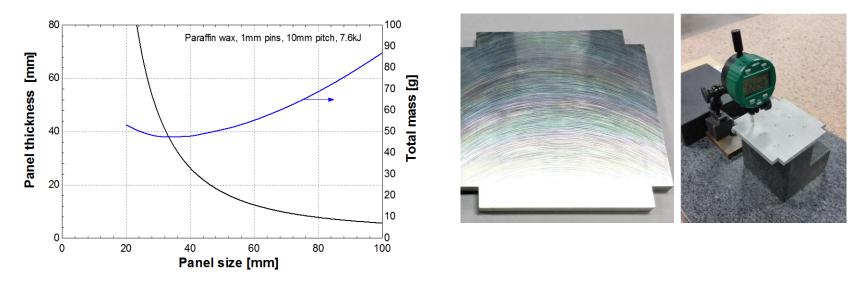
Need for a thermal solution to dampen large temperature fluctuations

• A Thermal Capacitor using Phase Change material:

- » Can dampen temperature fluctuations to maintain components within a tolerable range
- » Can reduce large temperature swings that could lead to undesirable thermal stresses

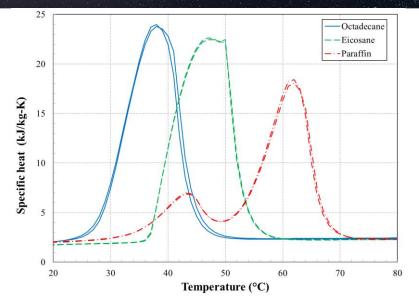


Thermal Capacitor built using 3D Printed Aluminum


Direct Laser Metal Sintering (DMLS) Internal structure:

»Load bearing »Thermal conductivity enhancement

Monolithic construction Filling ports


Design Optimization and Manufacturing

 Worked with DMLS manufacturers to identify minimum feature sizes, wall thickness, internal support structures, and filling ports
 Prototypes were within flatness specifications

Prototypes can be post-processed for optical characteristics

PCM Thermophysical Properties

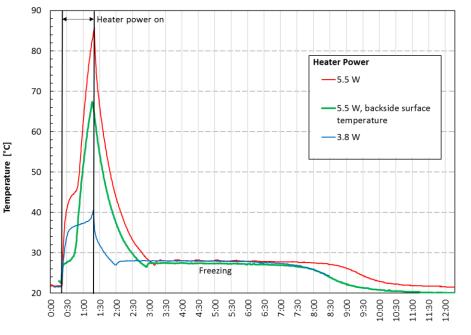
РСМ	Latent Heat (kJ/kg)		Variance
	Literature	Experimental	
Octadecane	244.0	234.5	3.9%
Eicosane	247.3	237.2	4.1%

PCM	Thermal Conduc	Variance	
	Literature	Experimental	
Octadecane (solid)	0.358	0.418	14%
Octadecane (liquid)	0.152	0.147	3%
Eicosane (liquid)	0.150	0.118	28%

•Measured specific heat (and latent heat) and thermal conductivity, to verify literature values:

ROCCOR

»Differential scanning calorimeter testing for specific heat (at Netzsch)


»Flash method test for thermal conductivity (at Netzsch)

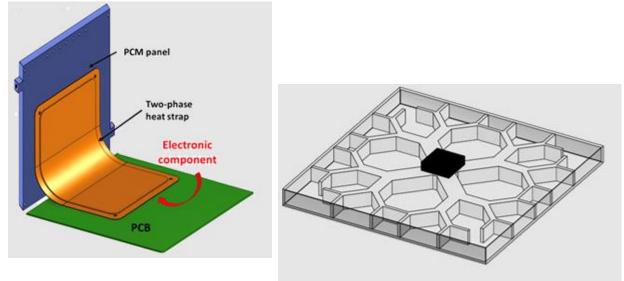
•Specific heat is within 5% of literature (measurement error)

•Conductivity can be 28% from literature

•Specific heat curve can be used in Thermal Desktop model

Thermal Testing

Hour into Cycle


•Panel was filled with PCM and sealed

- •Performed thermal testing under vacuum
- •Completed 25 freeze/thaw tests
- •No degradation was observed (no panel deformation, melt temperature or mass change)

Summary of Work and Future Work

- •Testing and analysis performed demonstrated the proof of concept
- •Future designs will be tailored for a given set of requirements
 •Future testing will incorporate FlexCool[™] heat strap

Thank you and questions

Project funded by NASA SBIR NNX16CM36P

Special Thanks to:

»Stephanie Mauro and Jeff Farmer (NASA MSFC)

»Professor Ben Malphrus, Kevin Brown, Yevgeniy Byelob (Morehead State University)

»Dr. Boris Yendler (Insat Consulting)

For more information please contact Mario Saldana mario.saldana@roccor.com

DILAS The diode laser company.

Other PCM Panel Solutions

		0			
R	U	5	5	U	

Requirements	Value	000
Operating temperature	20°C	
Thermal stability	<u>+</u> 1°C	1
MLA power dissipation	3 W	
Eclipse time	30 min	
Thermal Energy	7.35 kJ	
PCM Solution		
Material	n-Hexadecane	
Melt temperature	18.2°C	
PCM mass	31 g	
Total mass	~46 g	
Panel structure: Fine aluminum honeycor K1100 carbon fibers	nb core	

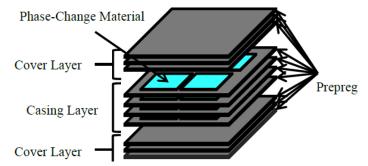
Aluminum frame

PCM panel for NASA Vegetation Canopy Lidar (VCL) project

[Choi, M., 2015, "Paraffin Phase Change Material for Maintaining Temperature Stability of IceCube Type of CubeSats in LEO", presented at AIAA Propulsion and Energy Forum and Exposition]

Paraffin Pack

MLA - IFA


Other PCM Panel Solutions



Requirements	Value
Thermal Energy	2.1 kJ
PCM Solution	
Material	Eicosane
Melt temperature	36.4°C
PCM mass	~10 g
Total mass	~100 g

Panel structure: Carbon fiber reinforced polymer

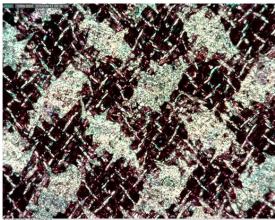
Casing layers sized based on amount of PCM material and to reduce bending

[Yamada, K., and Nagano, H., 2014, "Heat Storage Panel Using a Phase-Change Material Encapsulated in a High-Thermal Conductivity CFRP for Micro Satellites", 44th International Conference on Environmental Systems.]

Roccor's Enabling Technologies

•Computational tools for design and analysis:

»One-dimensional design models for flat heat pipes »CFD and FEA models for detailed analysis »Thermal Desktop analyses for space applications


•Scalable manufacturing methods:

»Commercial off-the-shelf materials (metal woven meshes) »Diffusion bonding

»3D printing (direct metal laser sintering, stereolithography)

•Ultra-omniphilic surface treatments:

»Based on collaboration with New Mexico State University »Increases capillary action and boiling of water on metal wicks

Diffusion Bonded Metal Woven Meshes

